Applicability Of Design Science Research For Biomedical Engineering Research

Main Article Content

Meredita Susanty
Nilam Fitriah
Ira Puspasari
Arry Akhmad Arman
Dimitri Mahayana

Abstract

The design-science paradigm aims to push the limits of human and organisational capabilities by generating new and inventive artefacts. The design science research framework includes engineering that applies science through the design process to solve challenges. The design process looks for a solution to meet the environment's needs. On the other hand, a research study results from a collaboration between design and knowledge base to answer a research problem.


The three principal cycles in design science research are the relevance cycle between the environment and the design phase, the design cycle within the design phase, and the rigour cycle between the design phase and the knowledge base. While it is most well-known in the engineering and computer science disciplines, it is also applied in biomedical engineering and bioinformatics. It is relevant in biomedical engineering because of the connection between research outputs and the issue of scientific rigour.  Three cases are presented in this article to depict design science study in biomedical and bioinformatics research. For each case discussed, machine learning has a big chance accompanied by unique challenges. In conclusion, the design science paradigm can also be used in biomedical engineering research to ensure that knowledge is relevant and appropriately included in the research process.

Downloads

Download data is not yet available.

Article Details

How to Cite
Susanty, M., Fitriah, N., Puspasari, I., Arman, A. A., & Mahayana, D. (2022). Applicability Of Design Science Research For Biomedical Engineering Research. PETIR, 15(2), 219–230. https://doi.org/10.33322/petir.v15i2.1726
Section
Articles

References

[1] I. Nugroho, “Positivisme Auguste Comte: Analisa Epistemologis Dan Nilai Etisnya Terhadap Sains,” Cakrawala J. Stud. Islam, vol. 11, no. 2, pp. 167–177, Dec. 2016, doi: 10.31603/CAKRAWALA.V11I2.192.
[2] A. F. Chalmers, What Is This Thing Called Science? Open University Press; 3 edition, 1999.
[3] G. J. Verkerke et al., “Science versus design; comparable, contrastive or conducive?,” J. Mech. Behav. Biomed. Mater., vol. 21, pp. 195–201, May 2013, doi: 10.1016/J.JMBBM.2013.01.009.
[4] T. S. Kuhn, The Structure of Scientific Revolutions, 3rd ed. University of Chicago Press, 1996.
[5] J. Lucas, “What is Engineering?,” 2014. https://www.livescience.com/47499-what-is-engineering.html (accessed Dec. 19, 2021).
[6] T. Reynolds-Pope, M. Chesnes, and C. Early, “The mobile librarian program at the NASA Goddard Space Flight Center,” Sci. Technol. Libr., vol. 29, no. 4, pp. 267–275, 2010, doi: 10.1080/0194262X.2010.523312.
[7] D. P. Dash, “Science as Reflective Practice: A Review of Frederick Grinnell’s Book, Everyday Practice of Science,” 2011.
[8] A. R. Hevner, N. Wickramasinghe, A. R. Hevner, and N. Wickramasinghe, “Design Science Research Opportunities in Health Care,” pp. 3–18, 2018, doi: 10.1007/978-3-319-72287-0_1.
[9] J. vom Brocke, A. Hevner, and A. Maedche, “Introduction to Design Science Research,” pp. 1–13, 2020, doi: 10.1007/978-3-030-46781-4_1.
[10] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in Information Systems Research,” MIS Q., vol. 28, no. 1, pp. 75–105, Dec. 2004, doi: 10.2307/25148625.
[11] M. M. B?la? and V. E. B?la?, “Postmodernism and control engineering,” Stud. Fuzziness Soft Comput., vol. 243, pp. 377–391, 2009, doi: 10.1007/978-3-540-93802-6_18.
[12] C. V. Negoita, “Postmodernism, cybernetics and fuzzy set theory,” Kybernetes, vol. 31, no. 7–8, pp. 1043–1049, 2002, doi: 10.1108/03684920210436327/FULL/XML.
[13] E. A. Sturgiss and A. M. Clark, “Using critical realism in primary care research: an overview of methods,” Fam. Pract., vol. 37, no. 1, pp. 143–145, Feb. 2020, doi: 10.1093/FAMPRA/CMZ084.
[14] E. Conlon, “A critical realist approach to engineering ethics,” Int. Symp. Technol. Soc. Proc., vol. 2016-March, Mar. 2016, doi: 10.1109/ISTAS.2015.7439443.
[15] J. Gauthier, A. T. Vincent, S. J. Charette, and N. Derome, “A brief history of bioinformatics,” Brief. Bioinform., vol. 20, no. 6, pp. 1981–1996, Nov. 2019, doi: 10.1093/BIB/BBY063.
[16] J. Leipzig, “A review of bioinformatic pipeline frameworks,” Brief. Bioinform., vol. 18, no. 3, pp. 530–536, May 2017, doi: 10.1093/BIB/BBW020.
[17] J. S. Coviello, Auscultation skills?: breath & heart sounds. Wolters Kluwer/Lippincott Williams & Wilkins, 2013.
[18] S. Ismail, I. Siddiqi, and U. Akram, “Localization and classification of heart beats in phonocardiography signals —a comprehensive review,” EURASIP J. Adv. Signal Process., vol. 2018, no. 1, pp. 1–27, Dec. 2018, doi: 10.1186/S13634-018-0545-9/TABLES/5.
[19] H. Liang, S. Lukkarinen, and I. Hartimo, “Heart sound segmentation algorithm based on heart sound envelogram,” Comput. Cardiol., pp. 105–108, 1997, doi: 10.1109/CIC.1997.647841.
[20] M. Tschannen, T. Kramer, G. Marti, M. Heinzmann, and T. Wiatowski, “Heart sound classification using deep structured features,” Comput. Cardiol. (2010)., vol. 43, pp. 565–568, Mar. 2016, doi: 10.22489/CINC.2016.162-186.
[21] T. E. Chen et al., “S1 and S2 heart sound recognition using deep neural networks,” IEEE Trans. Biomed. Eng., vol. 64, no. 2, pp. 372–380, Feb. 2017, doi: 10.1109/TBME.2016.2559800.
[22] S. Behbahani, “A hybrid algorithm for heart sounds segmentation based on phonocardiogram,” https://doi.org/10.1080/03091902.2019.1676321, vol. 43, no. 6, pp. 363–377, Aug. 2019, doi: 10.1080/03091902.2019.1676321.
[23] S. Li, F. Li, S. Tang, and W. Xiong, “A Review of Computer-Aided Heart Sound Detection Techniques,” Biomed Res. Int., vol. 2020, 2020, doi: 10.1155/2020/5846191.
[24] B. Onaral and A. Cohen, “Biomedical Signals,” in Medical Devices and Systems, 3rd ed., J. D. Bronzino, Ed. CRC Press, 2006, pp. 1–22.
[25] B. Denby, T. Schultz, K. Honda, T. Hueber, J. M. Gilbert, and J. S. Brumberg, “Silent speech interfaces,” Speech Commun., vol. 52, no. 4, pp. 270–287, Apr. 2010, doi: 10.1016/J.SPECOM.2009.08.002.
[26] N. Bhattacharyya, “The prevalence of voice problems among adults in the United States,” Laryngoscope, vol. 124, no. 10, pp. 2359–2362, Oct. 2014, doi: 10.1002/LARY.24740.
[27] F. Bocquelet, T. Hueber, L. Girin, S. Chabardès, and B. Yvert, “Key considerations in designing a speech brain-computer interface,” J. Physiol., vol. 110, no. 4, pp. 392–401, Nov. 2016, doi: 10.1016/j.jphysparis.2017.07.002.
[28] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nat. 2015 5217553, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.
[29] P. R. Carey, Protein engineering and design. Elsevier , 1996.
[30] A. T. Müller, J. A. Hiss, and G. Schneider, “Recurrent Neural Network Model for Constructive Peptide Design,” J. Chem. Inf. Model., vol. 58, no. 2, pp. 472–479, Feb. 2018, doi: 10.1021/ACS.JCIM.7B00414/SUPPL_FILE/CI7B00414_SI_001.ZIP.
[31] F. Grisoni, C. S. Neuhaus, G. Gabernet, A. T. Müller, J. A. Hiss, and G. Schneider, “Designing Anticancer Peptides by Constructive Machine Learning,” ChemMedChem, vol. 13, no. 13, pp. 1300–1302, Jul. 2018, doi: 10.1002/CMDC.201800204.
[32] N. Killoran, L. J. Lee, A. Delong, D. Duvenaud, and B. J. Frey, “Generating and designing DNA with deep generative models,” Dec. 2017, Accessed: Dec. 19, 2021. [Online]. Available: https://arxiv.org/abs/1712.06148v1.
[33] D. Repecka et al., “Expanding functional protein sequence spaces using generative adversarial networks,” Nat. Mach. Intell., pp. 1–10, Mar. 2021, doi: 10.1038/s42256-021-00310-5.
[34] A. Gupta and J. Zou, “Feedback GAN (FBGAN) for DNA: a Novel Feedback-Loop Architecture for Optimizing Protein Functions,” Apr. 2018, Accessed: Dec. 19, 2021. [Online]. Available: https://arxiv.org/abs/1804.01694v1.
[35] Z. Li, Y. Yang, E. Faraggi, J. Zhan, and Y. Zhou, “Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles,” Proteins Struct. Funct. Bioinforma., vol. 82, no. 10, pp. 2565–2573, Oct. 2014, doi: 10.1002/PROT.24620.
[36] J. O’Connell et al., “SPIN2: Predicting sequence profiles from protein structures using deep neural networks,” Proteins Struct. Funct. Bioinforma., vol. 86, no. 6, pp. 629–633, Jun. 2018, doi: 10.1002/PROT.25489.
[37] R. Shroff et al., “A structure-based deep learning framework for protein engineering,” bioRxiv, 2019, doi: 10.1101/833905.
[38] N. Anand-Achim et al., “Protein Sequence Design with a Learned Potential,” bioRxiv, p. 2020.01.06.895466, Mar. 2021, doi: 10.1101/2020.01.06.895466.
[39] J. G. Greener, L. Moffat, and D. T. Jones, “Design of metalloproteins and novel protein folds using variational autoencoders,” Sci. Reports 2018 81, vol. 8, no. 1, pp. 1–12, Nov. 2018, doi: 10.1038/s41598-018-34533-1.
[40] W. R. Taylor, “A ‘periodic table’ for protein structures,” Nat. 2002 4166881, vol. 416, no. 6881, pp. 657–660, Apr. 2002, doi: 10.1038/416657a.
[41] M. Karimi, S. Zhu, Y. Cao, and Y. Shen, “De Novo Protein Design for Novel Folds Using Guided Conditional Wasserstein Generative Adversarial Networks,” J. Chem. Inf. Model., vol. 60, no. 12, pp. 5667–5681, Dec. 2020, doi: 10.1021/ACS.JCIM.0C00593/SUPPL_FILE/CI0C00593_SI_001.PDF.
[42] J. Ingraham, V. K. Garg, R. Barzilay, and T. Jaakkola, “Generative models for graph-based protein design,” 2019. Accessed: Mar. 29, 2021. [Online]. Available: https://hdl.handle.net/1721.1/129731.
[43] B. Kuhlman, G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard, and D. Baker, “Design of a Novel Globular Protein Fold with Atomic-Level Accuracy,” Science (80-. )., vol. 302, no. 5649, pp. 1364–1368, Nov. 2003, doi: 10.1126/SCIENCE.1089427/SUPPL_FILE/1089427S.PDF.
[44] A. E. Donnelly, G. S. Murphy, K. M. Digianantonio, and M. H. Hecht, “A de novo enzyme catalyzes a life-sustaining reaction in Escherichia coli,” Nat. Chem. Biol. 2018 143, vol. 14, no. 3, pp. 253–255, Jan. 2018, doi: 10.1038/nchembio.2550.
[45] B. E. Correia et al., “Proof of principle for epitope-focused vaccine design,” Nat. 2014 5077491, vol. 507, no. 7491, pp. 201–206, Feb. 2014, doi: 10.1038/nature12966.
[46] N. P. King et al., “Computational design of self-assembling protein nanomaterials with atomic level accuracy,” Science (80-. )., vol. 336, no. 6085, pp. 1171–1174, Jun. 2012, doi: 10.1126/SCIENCE.1219364/SUPPL_FILE/DESIGN_MODELS.ZIP.
[47] C. E. Tinberg et al., “Computational design of ligand-binding proteins with high affinity and selectivity,” Nat. 2013 5017466, vol. 501, no. 7466, pp. 212–216, Sep. 2013, doi: 10.1038/nature12443.