Optimasi Daya Generator Angin Melalui Pitch Angle Control dengan Particle Swarm Optimization dan Genetic Algortihm

Main Article Content

Herminarto Nugroho
Muhammad Akram Saputra
Muhammad Fadil Anwar

Abstract

In optimizing the power of the wind turbine generator (WTG) due to fluctuating wind speed, the pitch angle control is used on WTG. The pitch angle has a great influence towards the rotational speed change of the WTG. The pitch angle value is in the range of 0-90 degrees. The optimal value of the pitch angle can produce the maximum power output from the wind turbine generator. Because the pitch angle value changes with wind speed, the optimization method is carried out using Particle Swarm Optimization (PSO) method and Genetic Algorithm (GA) optimization method. By using these two methods optimally, the optimal pitch angle will be obtained dependant on changes in wind speed.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nugroho, H., Saputra, M. A., & Anwar, M. F. (2023). Optimasi Daya Generator Angin Melalui Pitch Angle Control dengan Particle Swarm Optimization dan Genetic Algortihm. PETIR, 16(1), 100–108. https://doi.org/10.33322/petir.v16i1.1704
Section
Articles

References

[1] M. Sahib and T. Nayl, “A New Pitch Angle Control Method of Wind Turbine Generators Based on Feedforward Wind Speed Information,” in E3S Web of Conferences, 2019, vol. 122, p. 4001.
[2] A. Hwas and R. Katebi, “Wind turbine control using PI pitch angle controller,” ifac Proc. Vol., vol. 45, no. 3, pp. 241–246, 2012.
[3] E. Chavero-Navarrete, M. Trejo-Perea, J.-C. Jáuregui-Correa, R.-V. Carrillo-Serrano, and J.-G. Rios-Moreno, “Pitch angle optimization by intelligent adjusting the gains of a pi controller for small wind turbines in areas with drastic wind speed changes,” Sustainability, vol. 11, no. 23, p. 6670, 2019.
[4] M. Ali, S. Soedibyo, and I. Robandi, “Desain Pitch Angle Controller Turbin Angin Dengan Permanent Magnetic Synchronous Generator (PMSG) Menggunakan Imperialist Competitive Algorithm (ICA),” SENTIA 2015, vol. 7, no. 1, 2015.
[5] M. Ben Smida and A. Sakly, “Smoothing wind power fluctuations by particle swarm optimization-based pitch angle controller,” Trans. Inst. Meas. Control, vol. 41, no. 3, pp. 647–656, 2019.
[6] M. Tabassum, K. Mathew, and others, “A genetic algorithm analysis towards optimization solutions,” Int. J. Digit. Inf. Wirel. Commun., vol. 4, no. 1, pp. 124–142, 2014.
[7] R. Sitharthan, C. K. Sundarabalan, K. R. Devabalaji, T. Yuvaraj, and A. Mohamed Imran, “Automated power management strategy for wind power generation system using pitch angle controller,” Meas. Control, vol. 52, no. 3–4, pp. 169–182, 2019.
[8] M. Clerc, Particle swarm optimization, vol. 93. John Wiley \& Sons, 2010.
[9] S. Sengupta, S. Basak, and R. A. Peters, “Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives,” Mach. Learn. Knowl. Extr., vol. 1, no. 1, pp. 157–191, 2019.
[10] N. K. Jain, U. Nangia, and J. Jain, “A review of particle swarm optimization,” J. Inst. Eng. Ser. B, vol. 99, no. 4, pp. 407–411, 2018.
[11] R. D. Muhammad, “Metode Particle Swarm Optimization Untuk Mengontrol Frekuensi Pada Hibrid Wind-Diesel,” J. INTAKE J. Penelit. Ilmu Tek. Dan Ter., vol. 7, no. 2, pp. 1–13, 2016.
[12] A. Rauhan, T. H. Alrasyid, and H. Nugroho, “Perbandingan Simulated Annealing dan Particle Swarm Optimization untuk Mencari Waktu Optimal Pada Optical Ring Resonator,” J. Teknol., vol. 2, no. 2, 2020.
[13] A. Rachmanto, A. S. Ramadhani, and H. Nugroho, “Penggunaan Metode Particle Swarm Optimization (PSO) Pada Posisi Robot Dalam Sistem Visible Light Communication (VLC),” J. Teknol., vol. 2, no. 2, 2020.
[14] N. F. Istighfarin, R. A. Rahmastati, and H. Nugroho, “Penerapan Metode Particle Swarm Optimization (PSO) Dan Genetic Algorithm (GA) Pada Sistem Optimasi Visible Light Communication (VLC) Untuk Menentukan Posisi Robot,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 1, pp. 279–286, 2020.
[15] A. Permatasari, D. I. Alif, and H. Nugroho, “Penggunaan Metode Optimasi Particle Swarm Optimization (PSO) Untuk Menentukan Nilai Fasa Optik Optimum Pada Optical Ring Resonators,” J. Teknol., vol. 2, no. 2, 2020.
[16] D. Bratton and J. Kennedy, “Defining a standard for particle swarm optimization,” in 2007 IEEE swarm intelligence symposium, 2007, pp. 120–127.
[17] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.
[18] M. Saraswat and A. K. Sharma, “Genetic Algorithm for optimization using MATLAB,” Int. J. Adv. Res. Comput. Sci., vol. 4, no. 3, pp. 155–159, 2013.
[19] M. Kumar, M. Husain, N. Upreti, and D. Gupta, “Genetic algorithm: Review and application,” Available SSRN 3529843, 2010.
[20] N. H. Sabilla, A. Nugroho, and S. Handoko, “Optimasi penempatan pembangkit terdistribusi pada IEEE 30 bus system menggunakan algoritma genetika,” Transient J. Ilm. Tek. Elektro, vol. 2, no. 3, pp. 651–658, 2013.
[21] M. U. H. RAIS and R. AMINUDDIN, “ANALISIS DAMPAK MASUKNYA PEMBANGKIT LISTRIK TENAGA BAYU SIDRAP 70 MW TERKAIT KUALITAS ENERGI LISTRIK SISTEM SULSELBAR DAN KONTINUITAS PELAYANAN PADA KONDISI TEGANGAN DIP DENGAN PEMODELAN SIMULASI KOMPUTER,” J. INSTEK (Informatika Sains dan Teknol., vol. 5, no. 1, pp. 1–10, 2020.
[22] A. Emami and P. Noghreh, “New approach on optimization in placement of wind turbines within wind farm by genetic algorithms,” Renew. Energy, vol. 35, no. 7, pp. 1559–1564, 2010.
[23] M. R. Fariez, F. G. Maulana, and H. Nugroho, “Penggunaan Metode Optimasi Genetic Algorithm dalam Penentuan Letak Turbin Angin,” J. Teknol., vol. 2, no. 2, 2020.