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ABSTRACT  

A hydraulic system, a drive technology that uses a fluid to create force, is used in a wide range of 

industrial settings, as well as buildings, construction equipment, and vehicles. Well-planned 

predictive maintenance is considered the most efficient maintenance strategy to maintain the 

performance of the system. While data-driven approaches such as machine learning approaches are 

providing increasingly effective solutions in this domain, determining which method is fit, robust, 

and provides the most accurate detection has remained a challenge. This research proposes two 

Long-Short Term Memory (LSTM) models to predict the condition of each feature over time and 

various supervised algorithms to predict predicts the type of fault and the time fault that occur based 

on the condition of the features over time. The result shows the LSTM model which only considering 

one feature in the model provides higher accuracy than the model with all features. In predicting the 

fault, Gradient Boosting Classifier has the best performance among other models, including Logistic 

Regression, K-Nearest Neighbor, Support Vector Machine, Gaussian Naïve Bayes and the other 

ensemble models (extreme gradient boosting, random forest classifier, AdaBoost Classifier, extra 

tree classifier).  
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1. INTRODUCTION 

A hydraulic system, a drive technology that uses a fluid to create force, is used in a wide range 

of industrial settings, as well as buildings, construction equipment, and vehicles. A well-maintained 

hydraulic system is critical for keeping equipment running efficiently today and in the future. 

Preventing breakdowns through regular maintenance is far more productive than dealing with the 

downtime and increased costs associated with hydraulic system failures. The industry implements 

preventive maintenance instead of reactive maintenance which repair or replace breakdown 

equipment to reduce the downtime due to equipment breakdown [1], [2]. Preventive maintenance 

regularly inspecting and performing maintenance on machinery, regardless of whether the equipment 

needed maintenance either based on time or usage. However, research[3], [4] found that only 18% 

of asset failures had a pattern that increased with use or age. It appears to follow that preventive 

maintenance alone will not prevent the remaining 82 percent of asset failures, and a more advanced 

approach is required. Predictive maintenance, which involves monitoring the performance and 

condition of equipment during normal operation to predict the future failure point of a machine 

component, is one of the new types of maintenance that may gain increasing attention. So that the 

component, based on a plan, can be replaced just before it fails[1]. 

Condition monitoring, which is defined as the continuous monitoring of machines during 

process conditions to ensure the optimal use of machines, is required for predictive maintenance to 

exist. Data on usage history is an important indicator of equipment condition, as well as maintenance 

and service history. Historical data should be collected far enough in the past to accurately reflect 

the deterioration processes of the machines. Other static details about the machine/system, such as 

data about a machine's features, mechanical properties, typical usage behavior, and environmental 

operating conditions, are also useful. Data can be derived from various sources such as sensors, 

business data from ERP, and production data[1].   

Data-driven methods have been widely used in the manufacturing, power plant, mining, and 

oil and gas industry[5]–[9]. Aided by growing hardware capabilities, cloud-based solutions, and 

newly introduced state-of-the-art algorithms machine learning approaches have been demonstrated 

to provide increasingly effective solutions in this domain. Machine learning can extract useful 

information from vast amounts of data that would be far too large for any human engineer to handle 

all at once and predict data [1].  

Considering the potential of machine learning in making prediction based on historical data, 

this research proposes supervised machine learning approaches to predicts when the next 

maintenance should be performed, and the component(s) that should be maintained in the next 

maintenance cycle. 

Former research successfully identify the features to a specific fault and classify fault 

condition and the grade of severity[10]–[12]. This research utilizes the result from the prior result to 

predict the time for next maintenance what which item that should be maintained in a hydraulic 

system using a machine learning approach. 

 

2.   RESEARCH METHODOLOGY 

This research follows activities as shown in Figure 1, which consist of design, data collection, 

data preprocessing, modelling, then validation and testing. 

 

 
Figure 1. Research Activities 
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Detail activities is shown in Figure 2. Several decisions are made during design such as, 

selecting features that will be included in the model and target components that will be predicted by 

the model, algorithm for training and validation. Once the features and targets are selected, raw data 

related to those features and targets are collected. Data are divided into three groups; training, 

validation, and testing.  

During data pre-processing, datasets which have different distribution range should be 

normalized to reach convergence[13]. Normalized datasets are then transformed into a 3-D array 

format before it becomes an input for the machine learning model.   

This research uses two different models; the forecasting model predicts the condition of each 

features over time, and the classification model predicts the type of fault and the time fault occur 

based on the condition of the features over time. 

 

 
Figure 2. Training, Validation and Testing Steps 

 

The forecasting model uses Long-Short Term Memory, an artificial recurrent neural network 

(RNN) architecture[14], which resolves the vanishing gradient problem of RNN. This model is 

selected because it uses mainly sequential processing over time. This research uses two approaches 

to forecast maintenance time; the first approach considers all selected features in one model, and the 

second approach creates a forecast model for each feature.  

Data resulted from the forecasting model is transformed into supervised data; then, data 

dimension reduction is performed before using the dataset as an input for the classification model. 

Dimension reduction reduces several features into one feature by calculating the average data points 

from those features. Supervised algorithm requires balanced representations of all the classes 

contained in a dataset to perform effectively[15]. This research uses over-sampling and 

ensemble[16], [17] to improve the model accuracy related to class-imbalanced data. 

For classification model, this research compares several algorithms such as; logistic 

regression, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Gaussian Naïve Bayes, 

decision tree, and several ensemble models (extreme gradient boosting, gradient boosting classifier, 

random forest classifier, AdaBoost Classifier, extra tree classifier). Validation for classification 

model will not use validation data. Instead, this research uses k-fold cross-validation using all 

datasets (training, validation, and testing). 

During the training, both forecasting and classification model is run using training data, and 

hyperparameter tuning are performed to improve the accuracy of the model. The most optimized 

model is then validated and tested using validation and testing datasets during the validation and 

testing stage. 
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3. RESULT AND ANALYSIS 

This research uses 17 features to predict when maintenance should perform in the five fault 

categories. The selected features represent temperature, pressure, volume flow, motor power, 

vibration, cooling efficiency, cooling power, and efficiency factor. Each fault category has several 

classes as shown in Table 1. Table 1 also shows the number of instances for every fault class.  

The dataset is derived from a public data set1, which is the result of a hydraulic test rig 

experiment. The test rig is made up of a primary working circuit and a secondary cooling-filtration 

circuit that are linked by an oil tank. The system cycles through constant load cycles (duration 60 

seconds). It quantifies the condition of four hydraulic components while measuring process values 

such as pressures, volume flows, and temperatures (cooler, valve, pump, and accumulator). 

 

Table 1. Dataset for each  Fault Class 

Fault 

Categories 
Fault Classes Total Instances 

Cooler 

Close to Failure 732 

Reduced Efficiency 732 

Full Efficiency 741 

Valve 

Close to Total 

Failure 
360 

Severe Lag 360 

Small Lag 360 

Optimal switching 1125 

Internal Pump 

Severe Leakage 492 

Weak Leakage 492 

No Leakage 1221 

Hydraulic 

Accumulator 

Close to Total 

Failure 
808 

Severely Reduced 

Pressure 
399 

Slightly Reduced 

Pressure 
399 

Optimal Pressure 599 

Stable Flag 
Not stable yet 756 

Stable 1449 

 

Data are divided into three groups for the forecasting model; training (86639 data points), 

validation (21660 data points), and test (24000 data points). The result from the forecasting model 

becomes an input dataset for the classification model. Eighty percent of the dataset is used as the 

training dataset, while the remaining 20 percent dataset is used for testing dataset. All dataset is used 

to validate the classification model.  

Data processing consist of time-series transformation, normalization, and 3-D array 

transformation. Training data is transformed into a time series based on the 60-second cycle. The 

 
1 https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems 
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transformation result is shown in Figure 3(a). Because the range of data for each feature is different, 

data are normalized using Min-Max Scaler utilizing MinMaxScaler function from sklearn library.  

The normalization result is drawn in Figure 3(b). The LSTM model requires input in 3D-array, so 

the normalization results in Figure 3(b) is transformed into 3D-array. The 3D array dimension 

represents the number of samples, the number of timesteps, and the number of features. 

 

(a)   (b)  

Figure 3. Data Pre-processing Result (a) time-series transform (b) normalization 

 

Normalized data then becomes the input for the forecasting model. Forecasting uses two 

approaches, considering one feature and considering all features. Both approached use the same 

model, which consists of 3 layers; the first layer has 256 nodes, the second layer is the dropout layer 

with dropout ration 0.2, the third layer is the output layer, which consists of 17 nodes. The model 

uses the sigmoid activation function, Adam algorithm as an optimizer, and Mean Square Error loss 

function. The batch size is 32, and the epoch is 100, with early stopping. Figure 4 shows that the all-

features approach has a higher loss than the one-feature approach. Figure 5 depicts the prediction of 

the condition of several features over time, and it shows that the one-feature approach has higher 

accuracy than the all-feature approach. The result shows that the one-feature approach has a better 

result in terms of loss and accuracy compares to the all-features approach. 

 

 
Figure 4. LSTM Loss (left) all features (right) one feature. 

 

The data resulted from LSTM model using one feature approach then becomes input for the 

classification model, because it has better accuracy and loss result. The dataset is transformed into 

supervised data by adding target values. The supervised transformation is followed by data 

dimension reduction. Features with more than one data point are reduced to one data point by 

calculating the mean of that data points. 

The cross-validation in classification utilizes GridSearchCV from sklearn. GridSearchCV 

searches for the most optimum hyperparameter in the model among the defined list of initial 

parameters. To avoid overfitting, it uses five-folds cross-validation metrics. The optimum 

hyperparameters resulted from GridSearchCV are Max depth: 5, sub-samples: 0.5, max features: 17, 

n-estimators: 180.  
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(a) (b)  

(c) (d)  

(e) (f)  

Figure 5. LSTM Accuracy (a)Cooling Power-all features (b)Cooling power-one feature (c)Cooling 

Efficiency-all features (d)Cooling Efficiency-one feature (e)Pressure-all features (f)Pressure-one feature. 

 

All model shows an excellent performance in predicting the targets shown in Figure 6, except 

when predicting the valve condition and hydraulic accumulator shown in Figure 7(a). From the 

results drawn in Figure 6, we can see those ensemble algorithms have a better performance than 

simple algorithms such as Logistic Regression, SVM, and Gaussian Naive Bayes. However, the 

ensemble algorithms cross-validation does not have a promising result. It can be seen from the 

relatively low result for test precision and test recall.  The weak result of test precision and recall 

indicate overfitting in the training model.   

Considering the imbalanced data identified before, oversampling utilizing sklearn random 

oversampling is used to tackle the overfitting result. The algorithm generates new samples for under-

represented classes by randomly sampling with replacement of the currently available samples. The 

balanced dataset gives a significant improvement, as shown in Figure 7(b). 
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(a) (b)  

(c)  (d)  

Figure 6. Algorithm Performance (a) Cooler (b) Stable Flag (c) Pump (d) Accumulator 

 

(a) (b)  

Figure 7. Valve Condition (a)Overfit Prediction (b) Prediction after Oversampling 
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4. CONCLUSION  

The simulation results show that the forecasting model that only considers one feature has a 

better performance than the model that uses all features. However, the single feature model is 

challenging to maintain, and it requires a long time to find the fittest LSTM model for each feature. 

The resampling approach provides a better result than the ensemble in this training data set. In 

performing classification, ensemble algorithms have better performance compared to the other 

models. Several potential improvements for further research are observing the correlation between 

features and targets or the significant features for a specific target and uses feature engineering to 

determine the group of data based on its time or cycle and the dependency among the groups as well 

as the target condition at that time or cycle. For example, to predict valve condition, the most 

significant feature is pressure, and the pressure at cycle 1000 -1500 is affected by the pressure at 

cycle 200-700. 
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