Prototype Alat Monitoring Suhu, Kelembaban dan Kecepatan Angin Untuk Smart Farming Menggunakan Komunikasi LoRa dengan Daya Listrik Menggunakan Panel Surya

Main Article Content

Dewi Purnama Sari

Abstract

Belakangan ini penerapan Internet of Things (IoT) banyak dimanfaatkan pada bidang pertanian dan perkebunan. Pada bidang pertanian dan perkebunan, permasalahan tumbuh kembang tumbuhan merupakan permasalahan yang penting karena sangat bergantung pada faktor abiotik (fisik) dan biotik (biologis). Faktor abiotik (faktor lingkungan fisik) antara lain seperti suhu, kelembaban (udara dan tanah), pencahayaan, kecepatan angin, media tanam dan pupuk sangat mempengaruhi tumbuh kembang tumbuhan dan seringkali sulit terpantau. Agar tumbuh kembang tanaman dapat baik, maka perlu dipantau secara terus menerus faktor abiotik maupun biotik pada lingkungan tempat tumbuhnya tanaman. Tujuan diterapkan IoT dalam bidang pertanian agar dapat mengotomatisasi semua aspek pertanian dan metode pertanian untuk membuat proses lebih efisien dan efektif. Dalam penelitian ini dibuat sebuah prototipe untuk memantau suhu, kelembaban udara dan tanah serta kecepatan angin pada lahan pertanian dengan memanfaatkan komunikasi LoRa sebagai perangkat pendukung IoT dalam penerapan smart farming dengan keunggulannya menggunakan daya listrik yang bersumber dari energi matahari. Di sini data akan ditampilkan pada sebuah platform Cayenne sebagai user interface untuk dilakukan pemantauan dari jarak jauh. Dengan demikian pengguna dapat secara langsung memantau faktor abiotik (faktor fisik lingkungan) dari tempat tumbuh kembangnya tanaman. Dari pemantauan dapat dilakukan tindakan-tindakan yang diperlukan agar tanaman dapat tumbuh kembang dengan baik.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sari, D. P. (2021). Prototype Alat Monitoring Suhu, Kelembaban dan Kecepatan Angin Untuk Smart Farming Menggunakan Komunikasi LoRa dengan Daya Listrik Menggunakan Panel Surya. KILAT, 10(2), 370–380. https://doi.org/10.33322/kilat.v10i2.1376
Section
Articles

References

[1] A. McEwen and H. Cassimally, Designing the Internet of Things, 1st ed., Chicester: TJ International, 2014.
[2] D. Decoteau, Plant Physiology: Environmental Factors and Photosynthesis, Pennsylvania, 1998.
[3] P. Serikul, N. Nakpong, and N. Nakjuatong, “Smart Farm Monitoring via the Blynk IoT Platform?: Case Study: Humidity Monitoring and Data Recording,” in 16th International Conference on ICT and Knowledge Engineering (ICT&KE), 2018, pp. 1-6, doi: 10.1109/ICTKE.2018.8612441.
[4] J. Choi, et. al., “Light Control Smart Farm Monitoring System with Reflector Control,” in 20th International Conference on Control, Automation and Systems (ICCAS), 2020, pp. 69-74, doi: 10.23919/ICCAS50221.2020.9268238.
[5] M. Sandeep, et. al., “IoT Based Smart Farming System,” International Research Journal of Engineering and Technology (IRJET), volume 05, issue 09, pp. 1033-1036, September 2018.
[6] M. Jagadesh, et. al., “IoT Based Aeroponics Agriculture Monitoring System Using Raspberry Pi,” International Journal of Creative Research Thoughts (IJCRT), volume 6, issue 1, pp. 601-608, February 2018.
[7] Y. Mekonnen, et.al., “IoT Sensor Network Approach for Smart Farming: An Application in Food, Energy and Water System,” in 2018 IEEE Global Humanitarian Technology Conference (GHTC), 2018, doi: 10.1109/GHTC.2018.8601701.
[8] N. Wang and W. Wu, “The Architecture Analysis of Internet of Things,” in 5th Computer and Computing Technologies in Agriculture (CCTA), Beijing, China, October 2011, pp. 193-198.
[9] R. Zhang, F. Hao, and X. Sun, “The Design of Agricultural Machinery Service Management System Based on Internet of Things,” Procedia Computer Science, volume 107, pp. 53-57, 2017.
[10] Espressif Systems, ESP32-WROOM-32U Datasheet, versi 1.8, Shanghai, 2019.
[11] Accessed: July 28, 2021. [Online]. Available: https://www.arduino.cc/
[12] J. Yang, A. Sharma, and R. Kumar, “IoT Based Framework for Smart Agriculture,” International Journal of Agricultural and Environmental Information Systems, volume 12, issue 2, pp. 1-14, April-June 2021.
[13] A. Kumar Singh, “Applications of IoT in Agricultural System,” International Journal of Agricultural Science and Food Technology, volume 6, issue 1, pp. 041-045, 26 May 2020.
[14] R. Kumar Saini and C. Prakash, “Internet of Things (IoT) for Agriculture Growth using Wireless Sensor Networks,” Global Journal of Computer Science and Technology: E Network, Web & Security, volume 20, issue 2, pp. 27-34, 2020.
[15] A. Vimal Jerald and S. Albert Rabara, “Secured Architecture for Internet of Things (IoT) Enabled Smart Agriculture,” International Journal of Scientific & Technology Research (IJSTR), volume 9, issue 02, pp. 3707-3711, February 2020.
[16] P. Suanpang and P. Jamjuntr, “A Smart Farm Prototype with an Internet of Things (IoT) Case Study: Thailand,” Journal of Advanced Agricultural Technologies, vol. 6, no. 4, pp. 241-245, December 2019.
[17] M. Ayaz, et. al., “Internet of Things (IoT) Based Smart Agriculture: Toward Making the Fields Talk,” IEEE Access, vol. 7, pp. 129551-129583, 23 September 2019.
[18] K. N. Dhawale and N. Bawane, “IoT Based Smart Agriculture System,” IOSR Journal of Engineering (IOSRJEN), volume 09, issue 5, pp. 4-9, May 2019.
[19] A. A. Raneesha Madushanki, et. al., “Adoption of Internet of Things (IoT) in Agriculture and Smart Farming towards Urban Greening: A Review,” International Journal of Advanced Computer Science and Applications (IJACSA), vol. 10, no. 4, pp. 11-28, April 2019.
[20] R. Rajalakshmi, et. al., “IOT Based Smart Farming using Cloud Computing,” International Journal of Engineering Research & Technology (IJERT), volume 7, issue 01, pp. 1-5, 2019.
[21] C. El Fiorenza, et. al., “Smart e-Agriculture Monitoring Based on Arduino Using IoT,” International Journal of Scientific Development and Research (IJSDR), volume 3, issue 10, pp. 223-227, October 2018.
[22] R. Shahzadi, et. al., “Internet of Things based Expert System for Smart Agriculture,” International Journal of Advanced Computer Science and Applications (IJACSA), vol. 7, no. 9, pp. 341-350, 2016.