
KILAT
Vol. 11, No. 2, Oktober 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i2.1279

KILAT | 111�

Analysis and Design of CRC-32 IEEE 802.3 Generator for 8 Bit Data
Using VHDL

Aprilia Putri Dewanty 1*); Bheta Agus Wardijono 2

1. Department of Electrical Engineering, Faculty of Industrial Technology

Universitas Gunadarma, Cimanggis, Depok, Jawa Barat 16451 Indonesia
2. STMIK Jakarta STI&K, Jakarta Selatan, DKI Jakarta 12140 Indonesia

*)Email: apriliaputridewanty@gmail.com

Received: 7 Juni 2022 | Accepted: 24 November 2022 | Published: 5 Desember 2022

ABSTRACT

In the communication system to achieve better quality data transmission required a method that
can detect errors and correct errors. Cyclic Redundancy Check (CRC) is one of the methods used
to perform data transmission on data link layer that can detect errors. CRC-32 is used to error-
checking on Ethernet or implemented to IEEE 802.3. CRC generator in this research use CRC-32
IEEE 802.3 with 8 bit data width. This research can be implemented in the field of Electrical
Engineering, especially in the telecommunications section, namely Ethernet which functions for
transfer files and data via a computer network. CRC here has a role to prevent data changes
caused by noise during the transmission process. The methods used in this design is modulo-2
division parallel circuit. This design is expected to use a simple schematic circuit, less noise and
less resources. Testing is done by matching result of simulation using Xilinx ISE Simulator with
implementation on Spartan 3E XC3S500E device with result of count . This research requires a
resource of 223 4-input LUTs, 114 Occupied slice, 72 IOB flip flops, 114 bonded IOBs and 1
BUFGMUXs, where this research obtained resources is fewer than with previous research.

Keywords: CRC Design, VHDL, Xilinx ISE 8.1

ABSTRAK

Dalam sistem komunikasi untuk mencapai kualitas pengiriman data yang lebih baik diperlukan
suatu metode yang dapat mendeteksi kesalahan dan mengoreksi kesalahan. Cyclic Redundancy
Check (CRC) merupakan salah satu metode yang digunakan untuk melakukan transmisi data pada
lapisan data link yang dapat mendeteksi kesalahan. CRC-32 digunakan untuk memeriksa
kesalahan pada Ethernet atau diimplementasikan ke IEEE 802.3. Generator CRC dalam penelitian
ini menggunakan CRC-32 IEEE 802.3 dengan lebar data 8 bit. Penelitian ini dapat
diimplementasikan pada bidang Teknik Elektro khususnya pada bidang telekomunikasi yaitu
Ethernet yang berfungsi untuk mentransfer file dan data melalui jaringan komputer. CRC disini
berperan untuk mencegah perubahan data yang disebabkan oleh noise selama proses transmisi.
Metode yang digunakan dalam perancangan ini adalah rangkaian paralel modulo-2 division.
Desain ini diharapkan menggunakan skema rangkaian sederhana, lebih sedikit kebisingan dan
sumber daya yang lebih sedikit. Pengujian dilakukan dengan mencocokkan hasil simulasi
menggunakan Xilinx ISE Simulator dengan implementasi pada perangkat Spartan 3E XC3S500E
dengan hasil penghitungan. Penelitian ini membutuhkan resource 223 4-input LUT, 114 Occupied
slice, 72 IOB flip flop, 114 IOB berikat dan 1 BUFGMUX, dimana penelitian ini memperoleh
resource yang lebih sedikit dibandingkan dengan penelitian sebelumnya.

Kata kunci: CRC Design, VHDL, Xilinx ISE 8.1

KILAT
Vol. 11, No. 2, Oktober 2022, P-ISSN 2089-1245, E-ISSN 2655-4925
DOI: https://doi.org/10.33322/kilat.v11i2.1279

112�| KILAT�

1. INTRODUCTION
The development of communication and digital technology at this time is very fast. In digital

communications, data received may not be same as the transmitted data due to noise and
interference, which causes errors during the process of data transmission and storage. To validate
the data received is correct, many methods that can be used on a computer to detect that the
received data is valid or invalid. CRC method is very simple and efficient to detect and correct
errors.

Cyclic Redundancy Check (CRC) is an error-checking block code that has been used for
error detection, while the received word has to be divided by a predetermined number called the
generator number. If the remainder is zero, this means that there is no error detected, whereas
nonzero remainder this means that there is an error detected. The error detection is done by
counting the remaining bit on the message that needs to be transmitted. The remaining bit results
will connect to the message to generate the codeword.

Specific interface chip will cause waste of resources and increased cost, particularly in the
field of electronic design. This situation results in the requirement of realizing the whole system
function in a single or a very few chips. Therefore the design will be designed using Very high
speed Integrated Circuit Hardware Description Language (VHDL) which can be implemented on
FPGA. The VHDL source code has been edited and synthesized using Xilinx ISE 8.1. It will be
simulated and tested using ISim. By using this software can be known summary of the design
(number of slices and logic gates used in the design) that have been made.

The device may take corrective action, such as rereading the block or requesting that it be
sent again. Otherwise, the data is assumed to be error-free (though, with some small probability, it
may contain undetected errors; this is the fundamental nature of error-checking. Many engineers
conducting research on Cyclic Redundancy Code (CRC) Generator, including :

In the research work of Pramod S P, Rajagopal A, and Akshay S Kotain with title “FPGA
Implementation of Single Bit Error Correction using CRC”, in this research the designs are made
using VHDL and generator polynomial use is CRC-16 and CRC-8. The algorithm has been
implemented and verified on Xilinx Virtex-5 FPGA device. The device used for implementation is
xc5vlx30 with speed grade 3. CRC generator is designed using method of modulo-2 division
method. Purpose of this project is to focuses on effective implementation to detect the exact place
of single bit error and correct them using minimum hardware. Experimental results demonstrate the
validity of the proposed system. (Pramod S P, Rajagopal A, and Akshay S Kotain, 2012)

In the research of Debopam Ghosh, Arijit Mitra, Arijit Mukhopadhyay, Aniket Dawn and
Devopam Ghosh with title “A GENERALIZED CODE FOR COMPUTING CYCLIC
REDUNDANCY CHECK”, in this research the designs are made using VHDL and generator
polynomial use is CRC-3 for simulation. This simulation uses software Xilinx ISE Design Suite.
CRC generator is designed using method of modulo-2 division method. Purpose of this project is
for developing a generalized CRC code where the user can vary the size of the generator
polynomial. Experimental results demonstrate the validity of the proposed system. (Debopam
Ghosh, Arijit Mitra, Arijit Mukhopadhyay, Aniket Dawn and Devopam Ghosh, 2013)

In the research work of P. Harika and B. V. V. Satyanarayana with title “FPGA Based High
Speed Parallel Cyclic Redundancy Check”, in this research the designs are made using Verilog
HDL and generator polynomial use is CRC-4. CRC generator is designed using method of modulo-
2 division method and LFSR (linear feedback shift Register). Purpose of this project is to to design
high-speed parallel circuits of cyclic redundancy check (CRC). Implementation of CRC based on
unfolding, pipelining, and retiming algorithms. CRC architectures are first pipelined to reduce the

KILAT
Vol. 11, No. 2, Oktober 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i2.1279

KILAT | 113�

iteration bound by using novel look-ahead pipelining methods and then unfolded and retimed to
design high-speed parallel circuits. the proposed design can increase the speed by up to 25% and
control or even reduce hardware cost. (P. Harika and B. V. V. Satyanarayana, 2013)

In the research work of Chaitali Tohgaonkar , Prof. Sanjay B. Tembhurne and Prof. Vipin S.
Bhure with title “Design of Parallel CRC Generation for High Speed Application”, in this in this
research the designs are made using VHDL and generator polynomial use is CRC-32. CRC
generator is designed using method of modulo-2 division method and parallel pipelining methods .
Proposed design (32 bits) reduces the computation time and also reduces the number of slices used.
So applying pipelining to the CRC has increased the throughput to achieve high speed design. This
paper presents implementation of parallel Cyclic Redundancy Check (CRC) based upon DSP
algorithms of pipelining, retiming and unfolding. The design is simulated using Xilinx ISE.
(Chaitali Tohgaonkar , Prof. Sanjay B. Tembhurne and Prof. Vipin S. Bhure, 2015)

In the research work of Deepali P. Atrawalkar and Manoj D. Bagde with title “Design and
Simulation of Parallel CRC Generation Architecture for High Speed Application”, in this in this
research the designs are made using VHDL, simulated using Modelsim and synthesized by Altera
Quartus II. The generator polynomial use is CRC-16 CCITT. CRC generator is designed using
pipelined CRC method. Purpose of this project is to use pipelined CRC which can reduce clock
cycle to achieve high speed design. The design can be implemented with DSP algorithms which
improves the time further,increase speed in practice. (Deepali P. Atrawalkar and Manoj D.
Bagde, 2017)

In the research work of Abdul Rehman Buzdar, Liguo Sun with title “Cyclic Redundancy
Checking (CRC) Accelerator for Embedded Processor Datapaths”, in this research the designs are
made using VHDL and generator polynomial use is CRC5, CRC8, CRC16 and CRC32 inside a
CRC accelerator main block. Purpose of this project is to generate the performance of CRC
accelerated Microblaze SoftCore embedded processor datapath in terms of execution time and
energy efficiency. This acceleration is achieved at the cost of some area overhead. (Abdul
Rehman Buzdar and Liguo Sun, 2017).

2. CRC PROPOSED METHOD
2.1. Block Input Component Design

The CRC generator was designed in this research using a divisor polynomial of CRC-32
IEEE 802.3 with data width is 8 bits. CRC generator has 4 input port and 2 output port, which port
are port of dataword, crc_32, clk and rst as input ports and the output ports are port of remainder
and codeword. The dataword port in this design has an 8 bit data width. The clock port serves to
generate a pulse signal (clock). Rst port is a port to enable or disable CRC generator. The crc_32
port is value of polynomial divisor (CRC-32) ,this port has a 33 bit data width. Remainder port is
the result of combining dataword and augmented dataword then dividing it by divisor polynomial.
Codeword port is the result of combining dataword with remainder value. Block diagram of this
process can be seen in the figure 1.

KILAT
Vol. 11, No. 2, Oktober 2022, P-ISSN 2089-1245, E-ISSN 2655-4925
DOI: https://doi.org/10.33322/kilat.v11i2.1279

114�| KILAT�

Figure 1. Block Diagram of CRC calculation

CRC generator design will be simulated to Xilinx ISE software using VHDL programming

language.

2.2. Program Description

In this section will discuss about the CRC program scripts created using language VHDL.
The draft design created using Xilinx ISE software. This program will initially initialize and then
put the data processed with data width of 8 bits. Before the calculation, the program will check rst
port. If the rst port is high logic then the remainder port will be 0 or return to initially condition but
if the low logic then it will generate the CRC code with the specified polynomial divisor. How the
program works can be seen as shown in figure 2.

Figure 2. Program Flowchart

KILAT
Vol. 11, No. 2, Oktober 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i2.1279

KILAT | 115�

2.3. Implementation of Design using Software
In the process of design system using VHDL code will be implemented using Xilinx ISE 8.1

software as shown in the figure 3.

Figure 3. Process Panel

Synthesize is the process of generating a netlist for each source file. After conducting the

synthesis process then implement design. In this section there are three steps: translate, map, place
and route. Translate is the process of combining multiple files into a netlist. Map is a process to
map a slice and I/O Blocks. Place and route is process placing the design on the chip and
components connected. After implement design is completed, it can be seen a summary of the
design and report. After this process, the RTL schematic can be seen. Register-Transfer Level
(RTL) is a design abstraction which models a synchronous digital circuit in terms of the flow of
digital signals (data) between hardware registers, and the logical operations performed on those
signals.

3. CRC TESTING AND ANALYSIS
3.1. System Testing

System testing is done based on the design that has been made in this research. Before
performing a system simulation, first determine the data used in this research. There are 8 test data
to be conducted on this research then do calculations using modulo 2 division method. The result of
count with result of the design and simulation will be compared to determine the simulation result.
The following is an example of a CRC calculation using one of the data attempted 00011110 (1E in
hexadecimal).

KILAT
Vol. 11, No. 2, Oktober 2022, P-ISSN 2089-1245, E-ISSN 2655-4925
DOI: https://doi.org/10.33322/kilat.v11i2.1279

116�| KILAT�

As calculated above, the dataword will be combined with augmented dataword and then it
will be divided by the polynomial divisor to generate remainder bit. The result of remainder bit is
01110000100111110111101101111010. After the remainder bits are obtained then combined with
the dataword and then it will generated the codeword.

Codeword = 00011110_01110000100111110111101101111010 (1E709F7B7A in
hexadecimal). Codeword will be divided by the polynomial divisor for error checking. The
following is a calculation for error checking.

On the above calculation, remainder bit is 00000000000000000000000000000000. It has

been ensured that data received no error.
In Table 1 shows the trial data performed and also the results of calculations that have been

obtained. If the codeword matched with the result of the calculation so it shows that there is no
error detected.

KILAT
Vol. 11, No. 2, Oktober 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i2.1279

KILAT | 117�

Table 1. Table Trial Data

No.
Data

(Binary)
Data
(Hex)

Remainder (Binary)
Remainder

(Hex)
Codeword

(Hex)

1. 11010011 D3 0001 1100 1101 1000 1CD86D30 D31CD86D30

 0110 1101 0011 0000

2. 00011110 1E 0111 0000 1001 1111 709F7B7A 1E709F7B7A

 0111 1011 0111 1010

3. 11111111 FF 1011 0001 1111 0111 B1F740B4 FFB1F740B4

 0100 0000 1011 0100

4. 00001111 0F 0011 1000 0100 1111 384FBDBD 0F384FBDBD

 1011 1101 1011 1101

5. 11010100 D4 0000 0010 1001 1111 029F3D35 D4029F3D35

 0011 1101 0011 0101

6. 11010101 D5 0000 0110 0101 1110 065E2082 D5065E2082

 0010 0000 1000 0010

7. 11010110 D6 0000 1011 0001 1101 0B1D065B D60B1D065B

 0000 0110 0101 1011

8. 11010111 D7 0000 1111 1101 1100 0FDC1BEC D70FDC1BEC

 0001 1011 1110 1100

The result of trial data in hexadecimal is completely can be seen in the appendix. On the

results obtained there is no error, because the codeword matched with the result of the calculation.
Simulation results of the design can be seen in Figure 4. This simulation used Isim simulation.

Figure 4. Result of Simulation

KILAT
Vol. 11, No. 2, Oktober 2022, P-ISSN 2089-1245, E-ISSN 2655-4925
DOI: https://doi.org/10.33322/kilat.v11i2.1279

118�| KILAT�

Figure 4. is the result of simulation data that included in the CRC generator. Input ports are
dataword port, crc_32 port, clk and rst port. Output ports are remainder port and codeword port. If
rst port is logic low then remainder port will release results of calculation between the data entered
(dataword) and the divisor polynomial (crc_32). The value of the dataword used is the same as the
table. 1. The codeword port is result of combination of dataword and remainder bits. If rst port is
high logic then remainder port will be 0 or no results of calculations. One clock cycle (clk_period)
= 10 ns. The calculation results in table 1 and the simulation results yield the same value.

3.2. Design Summary

Results of the resources used from this research can be seen in Figure 5. In Figure 5 has
found the number of resources used in a 4-input LUTs is 223 or 1% of the resources available. the
number of resources used from the Occupied slice is 114 or 1% of the resources available, the
number of resources used on the IOB flip flops is 72 (32 IOB flip flops of remainder bit and 40
IOB flip flops of codeword), it corresponds to the theory of to the theory of linear shift register
Method for encoding/decoding that can be seen on the page 12 , the number of resources used on
the bonded IOBs is 114 or 45% of the resources available and the number of resources used on
BUFGMUXs is 1 or 4% of the resources available.

Figure 5. Design Summary

3.3. Comparison with pervious research

In this section will discuss the results of this research with previous research. Here are some
research journals related to CRC generator. In the table 2 shows the results of the comparison of
some methods or previous research.

KILAT
Vol. 11, No. 2, Oktober 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i2.1279

KILAT | 119�

Table 2. Results of The Comparison

Research
Methode 1
(CRC-32)

Methode 2
(CRC-32)

Methode 3 (CRC-
32)

Number of 4-
input LUTs

340 300 223

Number of
Slices

166 194 114

Method 1 is research work of Abdul Rehman Buzdar and Liguo Sun with title "Cyclic

Redundancy Checking (CRC) Accelerator for Embedded Processor Datapaths ". In the research
journal, CRC generator is designed using modulo-2 division method, Number of LUT is 340 and
number slice that used is 166 slices. The simulation used is Xilinx ISE design suit with
implementation on Spartan-6 FPGA SP605 Evaluation Kit device.

Mothod 2 is research work of Chaitali Tohgaonkar , Prof. Sanjay B. Tembhurne and Prof.
Vipin S. Bhure with title "Design of Parallel CRC Generation for High Speed Application". The
research journal CRC generator is designed using modulo-2 division method, Number of LUT is
300 and number of slice that used is 194 slices. The simulation used is ISE Simulator with
implementation on Spartan-3 FPGA device.

Method 3 is the result of this research that has been done and simulated using Xilinx ISE
Simulator with implementation on Spartan 3E XC3S500E device. Method 1 uses a lot of resources
specifically the number of 4-input LUT used is more than method 2 and method 3, whereas the
number of slices used is less than method 2. Method 3 has fewer resources than method 1 and
method 2. In this research, the same modulo-2 parallel circuit method is used, but in this research
the determination of the clock begins with the search for the maximum of data processing, up to 16
bits (consisting of input data and CRC values) and the schematic circuit in this research is simpler
than previous research.

4. CONCLUSION

Based on the design results of the CRC-32 generator in this study, it can be concluded that
the design has been successfully made and is also in accordance with the expected research
objectives. The CRC generator will work when there is incoming data with a data width of 8 bits
and then performs CRC-32 IEEE 802.3 calculations. In this study, there are two conditions when
the first port is in high condition, the output data for the remaining port will be 0, while if it is in
low condition, the remaining port output will be proportional to the results of the calculation of the
incoming data. The circuit scheme is simple, the resulting noise is less and the resources used are
also less than previous studies with the same CRC method. This study requires 223 4-input LUT
resources, 114 Occupied slices, 72 IOB flip flops, 114 bonded IOBs and 1 BUFGMUX, where this
study obtained fewer resources than previous research.

KILAT
Vol. 11, No. 2, Oktober 2022, P-ISSN 2089-1245, E-ISSN 2655-4925
DOI: https://doi.org/10.33322/kilat.v11i2.1279

120�| KILAT�

REFERENCE
[1] B. Chris, IEEE 802.3 Cyclic Redundancy Check. Xilinx (2001).
[2] W. M. El-Medany (2012). FPGAImplementation of CRC with Error Correction. ICWMC

2012, The Eighth International Conference on Wireless and Mobile Communications.
[3] Pramod S P, Rajagopal A, and Akshay S Kotain (2012). FPGA Implementation of Single Bit

Error Correction using CRC. International Journal of Computer Applications, vol. 52, no. 10,
pp. 2-6.

[4] D. Ghosh, A. Mitra, A. Mukhopadhyay and A. Dawn (2013). A GENERALIZED CODE
FOR COMPUTING CYCLIC REDUNDANCY. International Journal of Students Research
in Technology & Management, vol. 1, pp. 192-202.

[5] P. Harika and B. V. V. Satyanarayana (2013). FPGA Based High Speed Parallel Cyclic
Redundancy Check. International Journal of Engineering Research & Technology, vol. 2, no.
3.

[6] Chaitali Tohgaonkar , Prof. Sanjay B. Tembhurne and Prof. Vipin S. Bhure (2015). Design
of Parallel CRC Generation for High Speed Application. International Journal of Advanced
Research in Computer and Communication Engineering, vol. 4, no. 6.

[7] Deepali P. Atrawalkar and Manoj D. Bagde (2017). Design and Simulation of Parallel CRC
Generation Architecture for High Speed Application. International Journal of Advanced
Research in Electrical, Electronics and Instrumentation Engineering, vol. 4, no. 7.

[8] Abdul Rehman Buzdar and Liguo Sun (2017). Cyclic Redundancy Checking (CRC)
Accelerator for Embedded Processor Datapaths. International Journal of Advanced
Computer Science and Applications (IJACSA), vol. 8, no. 2.

[9] N. G. Augoestien and Ryan Aditya (2019). Implementasi Rangkaian CRC (Cyclic
Redundancy Check) Generator pada FPGA (Field Programmable Gate Array). Indonesian
Journal of Electronics and Instrumentation Systems (IJEIS), vol. 9, pp. 65-74.

[10] Mitra, J. dan Nayak, T., (2017). Reconfigurable very high throughput low latency VLSI
(FPGA) design architecture of CRC 32, The VLSI Journal, 56, pp. 1-14.

[11] C. E. Kennedy and M. Mozaffari-Kermani (2015). Generalized parallel CRC computation on
FPGA. IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE),
Halifax, NS, 2015, pp. 107-113.

[12] A. R. Buzdar, L. Sun, R. Kashif, M. W. Azhar and M. I. Khan (2017). Cyclic Redundancy
Checking (CRC) Accelerator for Embedded Processor Datapaths. International J. of
Advanced Computer Science and Applications, Vol 8, No. 2, pp 321- 325.

[13] Y. Jun, D. Jun, L. Na, G. Yixiong and D. Yin (2010). FPGA-based multi-channel CRC
generator implementation. International Conference on E-Health Networking Digital
Ecosystems and Technologies (EDT), Shenzhen, 2010, pp. 81-84.

[14] M. F. Hasmi, dan A. G. Keskar (2017). An Optimized FPGA Implementation of CAN 2.0
Protocol Error Detection Circuitry. Indonesian Journal of Electrical Engineering and
Computer Science, Vol. 6, No. 3, pp. 602-614.

[15] S.N.V.P.Kumar, S. B. Jyothi, G. K. S. Tejaswi (2017). FPGA Based Design Of Parallel
CRCGeneration For High Speed Application. IJSRET (International Journal of Scientific
Research Engineering & Technology, Vol 6,

