Simulasi Pencegahan Blackout Akibat Gangguan Hubung Singkat Di Luar Zona Proteksi Diferensial Pada Jaringan Distribusi Closed Loop Penyulang Kompetensi dan Potensial

Main Article Content

Eko Nio Rizki

Abstract

One way to improve the reliability of the power distribution system is to design a good protection system, which is selective, sensitive, reliable, fast, and easy. Through the simulation in this study, the protection system that has been installed will be compared, namely a closed-loop system with differential relay protection with a protection system with additional logic at the relay output, focusing on busbar disturbances belonging to customers substations. The result is that the protection system that has been installed has a drawback, namely when there is a disturbance in the busbar of the customer's substation, the two feeder circuit breakers in the loop system will trip with the required clearance time of 765 milliseconds, while after adding logic to the relay output, when it occurs there is only one feeder circuit breaker that trips while another tripped circuit breaker is at the substation with the required clearance time of  524 milliseconds, so there is only one customer who experiences a blackout.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rizki, E. N. (2021). Simulasi Pencegahan Blackout Akibat Gangguan Hubung Singkat Di Luar Zona Proteksi Diferensial Pada Jaringan Distribusi Closed Loop Penyulang Kompetensi dan Potensial. ENERGI & KELISTRIKAN, 13(2), 198–205. https://doi.org/10.33322/energi.v13i2.1555
Section
Articles

References

[1]Fatoni, A. (2017). Analisa Keandalan Sistem Distribusi 20 kV PT.PLN Rayon Lumajang dengan Metode FMEA (Failure Modes and Effects Analysis). Jurnal Teknik ITS, 5(2). https://doi.org/10.12962/j23373539.v5i2.16150
[2]Perdana, W. P., Nur Hasanah, R., & S. Dachlan, H. (2009). Evaluasi Keandalan Sistem Tenaga Listrik Pada Jaringan Distribusi Primer Tipe Radial Gardu Induk Blimbing. Jurnal EECCIS.
[3]Hardiantono, D., & Mangera, P. (2019). Comparison using express feeder and capacitor bank allocation to corrective voltage level on primary distribution feeder. European Journal of Electrical Engineering, 21(4), 355–359. https://doi.org/10.18280/ejee.210402
[4]Ode, A. K., & Faridha, M. (2020). Pengaruh Manuver Jaringan Distribusi 20 Kv Terhadap Indeks Keandalan Penyulang BT07 Batulicin. Jurnal EEICT (Electric, Electronic, Instrumentation, Control, Telecommunication), 3(2). https://doi.org/10.31602/eeict.v3i2.4275
[5]Samsinar, Riza, and Witji Wiyono. 2019. “Studi Keandalan Rekonfigurasi Jaringan Program Zero Down Time (Zdt) Di Kawasan Sudirman Central Business Distric (Scbd) Menggunakan Software ETAP 12.6.” RESISTOR (ElektRonika KEndali TelekomunikaSI Tenaga LiSTrik KOmputeR) 2 (1). Universitas Muhammadiyah Jakarta: 65. doi:10.24853/resistor.2.1.65-72.
[6]Dharmawan, N. B., Ariastina, W. G., & Amrita, A. A. N. (2020). Studi Sistem Proteksi Line Current Differential Relay Pada Saluran Transmisi 150 KV. Universitas Muhammadiyah Surakarta, 7(1), 152–161.
Samsinar, R., & Wiyono, W. (2019). Studi Keandalan Rekonfigurasi Jaringan Program Zero Down Time (Zdt) di Kawasan Sudirman Central Business Distric (Scbd) Menggunakan [7]Software ETAP 12.6. RESISTOR (ElektRonika KEndali TelekomunikaSI Tenaga LiSTrik KOmputeR), 2(1), 65. https://doi.org/10.24853/resistor.2.1.65-72
[8]Nova, R. C. (2018). Simulasi Dan Monitoring Relai Diferensial Sebagai Proteksi Busbar Di Gardu Induk Tegangan Tinggi Dengan Konfigurasi Double Busbar Berbasis Arduino Mega 2560 Dengan Menggunakan Scada. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
[9]Thangalakshmi, S. (2016). Planning and coordination of relays in the distribution system. Indian Journal of Science and Technology, 9(31). https://doi.org/10.17485/ijst/2016/v9i31/91734
[10]Darabi, A., Bagheri, M., & Gharehpetian, G. B. (2020). Highly sensitive microgrid protection using overcurrent relays with a novel relay characteristic. IET Renewable Power Generation, 14(7), 1201–1209. https://doi.org/10.1049/iet-rpg.2019.0793
[11]Das, J. C. (2017). Short-circuits in AC and DC systems: ANSI, IEEE, and IEC standards. Short-Circuits in AC and DC Systems: ANSI, IEEE, and IEC Standards (Vol. 1, pp. 1–725). CRC Press. https://doi.org/10.1201/9781351228282
[12]Qais, M., Khaled, U., & Alghuwainem, S. (2018). Improved differential relay for bus bar protection scheme with saturated current transformers based on second-order harmonics. Journal of King Saud University - Engineering Sciences, 30(4), 320–329. https://doi.org/10.1016/j.jksues.2016.10.003
[13]Masood, N. A., Yan, R., & Kumar Saha, T. (2018). Cascading Contingencies in a Renewable Dominated Power System: Risk of Blackouts and Its Mitigation. In IEEE Power and Energy Society General Meeting (Vol. 2018-August). IEEE Computer Society. https://doi.org/10.1109/PESGM.2018.8586316Le, K. H., & Vu, P. H. (2019). Performance Evaluation of a Generator Differential Protection Function for a Numerical Relay. Engineering, Technology & Applied Science Research, 9(4), 4342–4348. https://doi.org/10.48084/etasr.2754
[14]Medeiros, R. P., & Costa, F. B. (2018). A Wavelet-Based Transformer Differential Protection with Differential Current Transformer Saturation and Cross-Country Fault Detection. IEEE Transactions on Power Delivery, 33(2), 789–799. https://doi.org/10.1109/TPWRD.2017.276406
[15]Hemmati, R., & Mehrjerdi, H. (2019). Non-standard characteristic of overcurrent relay for minimum operating time and maximum protection level. Simulation Modelling Practice and Theory, 97. https://doi.org/10.1016/j.simpat.2019.101953