Optimalisasi Prediksi Afinitas Interaksi Obat-Target dengan Graph Neural Network dan Attention Mechanism

Main Article Content

Husni Fadhilah Dhiya Ul Haq
Pawesi Siantika
Dimmas Mulya
Putri Saptawati

Abstract

Virtual screening pada obat memainkan peran penting dalam meningkatkan throughput penemuan dan mengurangi biaya R&D. Deep learning muncul sebagai solusi menjanjikan, menawarkan hasil yang efisien tanpa memerlukan keahlian domain yang luas atau detail struktural. Studi ini memperkenalkan iGanDTA, sebuah perbaikan dari model multitask yang mampu memprediksi afinitas pengikatan obat-target dengan akurasi tinggi dan mengklasifikasikan interaksi dengan performa yang sangat baik. Menggunakan residual graph neural network, iGanDTA memproses data fingerprint dari senyawa untuk membedakan tingkat pengikatan dalam urutan protein. Evaluasi pada dataset benchmark menunjukkan performa yang superior dibandingkan dengan metode yang ada, dengan iGanDTA mencapai skor MSE, CIndex, dan R2 masing-masing 0.238, 0.894, dan 0.710 pada dataset Davis serta 0.181, 0.864, dan 0.746 pada dataset KIBA

Downloads

Download data is not yet available.

Article Details

How to Cite
Dhiya Ul Haq, H. F., Pawesi Siantika, Dimmas Mulya, & Putri Saptawati. (2025). Optimalisasi Prediksi Afinitas Interaksi Obat-Target dengan Graph Neural Network dan Attention Mechanism . PETIR, 17(2), 222–236. Retrieved from http://jurnal.itpln.ac.id/petir/article/view/2566
Section
Articles

References

J. A. DiMasi, “Research and Development Costs of New Drugs,” JAMA, vol. 324, no. 5, p. 517, Aug. 2020, doi: 10.1001/jama.2020.8648.

H. Wu et al., “AttentionMGT-DTA: A multi-modal drug-target affinity prediction using graph transformer and attention mechanism,” Neural Networks, vol. 169, no. September 2023, pp. 623–636, 2024, doi: 10.1016/j.neunet.2023.11.018.

S. Wang, P. Shan, Y. Zhao, and L. Zuo, “GanDTI: A multi-task neural network for drug-target interaction prediction,” Comput. Biol. Chem., vol. 92, no. December 2020, p. 107476, 2021, doi: 10.1016/j.compbiolchem.2021.107476.

S. Bonner et al., “A review of biomedical datasets relating to drug discovery: a knowledge graph perspective,” Brief. Bioinform., vol. 23, no. 6, pp. 1–19, 2022, doi: 10.1093/bib/bbac404.

B. C. Zhiqin Zhu, Zheng Yao, Guanqiu Qi, Neal Mazur, Pan Yang, “CAAI Trans on Intel Tech - 2023 - Zhu - Associative learning mechanism for drug?target interaction prediction.pdf,” CAAI Transactions on Intelligence Technology. John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology, pp. 1558–1577, 2023. doi: 10.1049/cit2.12194.

N. R. C. Monteiro, J. L. Oliveira, and J. P. Arrais, “TAG-DTA: Binding-region-guided strategy to predict drug-target affinity using transformers,” Expert Syst. Appl., vol. 238, no. PE, p. 122334, 2024, doi: 10.1016/j.eswa.2023.122334.

Q. Zhao, H. Zhao, K. Zheng, and J. Wang, “HyperAttentionDTI: improving drug-protein interaction prediction by sequence-based deep learning with attention mechanism,” Bioinformatics, vol. 38, no. 3, pp. 655–662, 2022, doi: 10.1093/bioinformatics/btab715.

M. Yazdani-Jahromi et al., “AttentionSiteDTI: An interpretable graph-based model for drug-Target interaction prediction using NLP sentence-level relation classification,” Brief. Bioinform., vol. 23, no. 4, pp. 1–14, 2022, doi: 10.1093/bib/bbac272.

T. Nguyen, H. Le, T. P. Quinn, T. Nguyen, T. D. Le, and S. Venkatesh, “GraphDTA: Predicting drug target binding affinity with graph neural networks,” Bioinformatics, vol. 37, no. 8, pp. 1140–1147, 2021, doi: 10.1093/bioinformatics/btaa921.

Y. Zhang, Y. Hu, N. Han, A. Yang, X. Liu, and H. Cai, “A survey of drug-target interaction and affinity prediction methods via graph neural networks,” Comput. Biol. Med., vol. 163, no. May, p. 107136, 2023, doi: 10.1016/j.compbiomed.2023.107136.

H. Qi, T. Yu, W. Yu, and C. Liu, “Drug–target affinity prediction with extended graph learningconvolutional networks,” BMC Bioinformatics, vol. 25, no. 1, pp. 1–21, 2024, doi: 10.1186/s12859-024-05698-6.

A. C. Cheng et al., “Structure-based maximal affinity model predicts small-molecule druggability,” Nat. Biotechnol., vol. 25, no. 1, pp. 71–75, 2007, doi: 10.1038/nbt1273.

L. Chen et al., “TransformerCPI: Improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments,” Bioinformatics, vol. 36, no. 16, pp. 4406–4414, 2020, doi: 10.1093/bioinformatics/btaa524.

H. Öztürk, A. Özgür, and E. Ozkirimli, “DeepDTA: Deep drug-target binding affinity prediction,” Bioinformatics, vol. 34, no. 17, pp. i821–i829, 2018, doi: 10.1093/bioinformatics/bty593.

S. Hu, C. Zhang, P. Chen, P. Gu, J. Zhang, and B. Wang, “Predicting drug-target interactions from drug structure and protein sequence using novel convolutional neural networks,” BMC Bioinformatics, vol. 20, no. Suppl 25, pp. 1–12, 2019, doi: 10.1186/s12859-019-3263-x.

F. Wan et al., “DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening,” Genomics, Proteomics Bioinforma., vol. 17, no. 5, pp. 478–495, 2019, doi: 10.1016/j.gpb.2019.04.003.

S. G. Paul, A. Saha, M. Z. Hasan, S. R. H. Noori, and A. Moustafa, “A Systematic Review of Graph Neural Network in Healthcare-Based Applications: Recent Advances, Trends, and Future Directions,” IEEE Access, vol. 12, no. February, pp. 15145–15170, 2024, doi: 10.1109/ACCESS.2024.3354809.

Z. Zhang, P. Cui, and W. Zhu, “Deep Learning on Graphs: A Survey,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 249–270, 2022, doi: 10.1109/TKDE.2020.2981333.

Z. Yang, W. Zhong, L. Zhao, and C. Yu-Chian Chen, “MGraphDTA: Deep multiscale graph neural network for explainable drug-target binding affinity prediction,” Chem. Sci., vol. 13, no. 3, pp. 816–833, 2022, doi: 10.1039/d1sc05180f.

H. He, G. Chen, and C. Y. C. Chen, “NHGNN-DTA: a node-adaptive hybrid graph neural network for interpretable drug-target binding affinity prediction,” Bioinformatics, vol. 39, no. 6, 2023, doi: 10.1093/bioinformatics/btad355.

D. Hu, “An Introductory Survey on Attention Mechanisms in NLP Problems BT - Intelligent Systems and Applications,” Y. Bi, R. Bhatia, and S. Kapoor, Eds., Cham: Springer International Publishing, 2020, pp. 432–448.

M. I. Davis et al., “Comprehensive analysis of kinase inhibitor selectivity,” Nat. Biotechnol., vol. 29, no. 11, pp. 1046–1051, 2011, doi: 10.1038/nbt.1990.

J. Tang et al., “Making Sense of Large-Scale Kinase Inhibitor Bioactivity Data Sets: A Comparative and Integrative Analysis,” J. Chem. Inf. Model., vol. 54, no. 3, pp. 735–743, Mar. 2014, doi: 10.1021/ci400709d.

T. He, M. Heidemeyer, F. Ban, A. Cherkasov, and M. Ester, “SimBoost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines,” J. Cheminform., vol. 9, no. 1, pp. 1–14, 2017, doi: 10.1186/s13321-017-0209-z.

T. Pahikkala et al., “Toward more realistic drug-target interaction predictions,” Brief. Bioinform., vol. 16, no. 2, pp. 325–337, 2015, doi: 10.1093/bib/bbu010.

X. Lin, K. Zhao, T. Xiao, Z. Quan, Z. J. Wang, and P. S. Yu, “Deepgs: Deep representation learning of graphs and sequences for drug-target binding affinity prediction,” Front. Artif. Intell. Appl., vol. 325, no. i, pp. 1301–1308, 2020, doi: 10.3233/FAIA200232.

T. M. Nguyen, T. Nguyen, T. M. Le, and T. Tran, “GEFA: Early Fusion Approach in Drug-Target Affinity Prediction,” IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 19, no. 2, pp. 718–728, 2022, doi: 10.1109/TCBB.2021.3094217