Metode Klasifikasi Support Vector Machine (SVM) Untuk Analisis Sentimen Aplikasi Bing: Chat with AI & GPT-4 Di Google Play Store
Main Article Content
Abstract
The development of Artificial Intelligence (AI), particularly through ChatGPT technology and the emergence of Bing: Chat with AI & GPT-4, forms the foundation for this research. This study conducts sentiment analysis on users of the Bing: Chat with AI & GPT-4 application using the Support Vector Machine (SVM) classification method. A total of 10,351 reviews from the Google Play Store underwent preprocessing stages, including cleaning, case-folding, tokenizing, stop word removal, stemming, and filtering. The implementation of the TF-IDF weighting method and Support Vector Machine (SVM) classification resulted in a negative sentiment of 58.37% and a positive sentiment of 41.66%, with a testing accuracy of 89.44%. Visualization using word clouds, incorporating common words in positive and negative reviews, provides insights into user preferences and dissatisfaction, particularly regarding the speed and performance of Bing: Chat with AI & GPT-4. The study concludes that improving the application's quality is crucial for future user satisfaction, and future research recommendations include utilizing data from other platforms such as the App Store and social media for comprehensive sentiment analysis.
Downloads
Article Details
References
T. N. Fitria, “ELT FORUM 12(1) (2023) Journal of English Language Teaching Artificial intelligence (AI) technology in OpenAI ChatGPT application: A review of ChatGPT in writing English essay,” Journal of English Language Teaching, vol. 12, no. 1, pp. 44–58, 2023, doi: https://doi.org/10.15294/elt.v12i1.64069.
M. Farwati, I. Talitha Salsabila, K. Raihanun Navira, T. Sutabri, and U. Bina Darma Palembang, “ANALISA PENGARUH TEKNOLOGI ARTIFICIAL INTELLIGENCE (AI) DALAM KEHIDUPAN SEHARI-HARI,” 2023. doi: https://doi.org/10.47024/js.v11i1.563.
A. Setiawan and U. K. Luthfiyani, “Penggunaan ChatGPT Untuk Pendidikan di Era Education 4.0: Usulan Inovasi Meningkatkan Keterampilan Menulis,” Jurnal PETISI, vol. 04, no. 01, pp. 49–58, 2023, doi: https://doi.org/10.36232/jurnalpetisi.v4i1.3680.
A. L. Beam, J. M. Drazen, I. S. Kohane, T.-Y. Leong, A. K. Manrai, and E. J. Rubin, “Artificial Intelligence in Medicine,” New England Journal of Medicine, vol. 388, no. 13, pp. 1220–1221, Mar. 2023, doi: 10.1056/NEJMe2206291.
M. Informatika and P. P. Ganesha, “MODEL INDUSTRI BISNIS MEDIA MASSA PADA ERA PERKEMBANGAN ARTIFICIAL INTELLIGENCE (AI) DI INDONESIA Iis Saidah,” 2021. doi: https://doi.org/10.23969/linimasa.v4i1.3461.
M. Chui, B. Hall, H. Mayhew, A. Singla, and A. Sukharevsky, “The state of AI in 2022-and a half decade in review,” 2022. Accessed: Nov. 06, 2023. [Online]. Available: https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2022-and-a-half-decade-in-review#research
M. Ilmar Rifaldi, Y. Raymond Ramadhan, and I. Jaelani, “Analisis Sentimen Terhadap Aplikasi Chatgpt Pada Twitter Menggunakan Algoritma Naïve Bayes,” 2023. doi: http://dx.doi.org/10.30645/j-sakti.v7i2.687.
L. Yusuf and S. Masripah, “SENTIMEN ANALISIS CHATGPT DENGAN ALGORITMA NAÏVE BAYES DAN OPTIMASI PSO,” INTI Nusa Mandiri, vol. 18, no. 1, pp. 59–64, Aug. 2023, doi: 10.33480/inti.v18i1.4230.
S. Rahayu, J. Jaya Purnama, A. Hamid, and N. K. Hikmawati, “Analisis Sentimen GPT-3 (Generative Pre-trained Transformer 3) Menggunakan,” 2023. doi: https://doi.org/10.24002/jbi.v14i02.7039.
Microsoft Corporation, “Bing: Chat with AI & GPT-4,” play.google.com. Accessed: Nov. 11, 2023. [Online]. Available: https://play.google.com/store/apps/details?id=com.microsoft.bing&hl=id
X.-Q. Dao and N.-B. Le, “ChatGPT is Good but Bing Chat is Better for Vietnamese Students,” Jul. 2023, [Online]. Available: http://arxiv.org/abs/2307.08272
R. Maulana, A. Voutama, and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store menggunakan Algoritma NBC,” j.teknologi terpadu, vol. 9, pp. 42–48, 2023, doi: https://doi.org/10.54914/jtt.v9i1.609.
N. Muhammad Farhan and B. Setiaji, “Komparasi Metode Naive Bayes dan SVM pada Sentimen Twitter Mengenai Persoalan Perppu Cipta Kerja,” Indonesian Journal of Computer Science Attribution, vol. 12, no. 5, pp. 2023–2718, doi: https://doi.org/10.33022/ijcs.v12i5.3375.
D. Atmajaya, A. Febrianti, and H. Darwis, “Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter,” Indonesian Journal of Computer Science Attribution, vol. 12, no. 4, p. 2173, 2023, doi: https://doi.org/10.33022/ijcs.v12i4.3341.
J.-C. M. Sabue et al., “Sentiment Analysis on Satusehat Application Using Support Vector Machine Method,” Open Access Journal, vol. 5, no. 3, pp. 143–149, 2023, doi: 10.35882/jeemi.v5i3.304.
M. Khoirul, U. Hayati, and O. Nurdiawan, “ANALISIS SENTIMEN APLIKASI BRIMO PADA ULASAN PENGGUNA DI GOOGLE PLAY MENGGUNAKAN ALGORITMA NAIVE BAYES,” 2023.
R. AL Anshari, S. Alam, and M. T. Hafid, “KOMPARASI PAYMENT DIGITAL UNTUK ANALISIS SENTIMEN BERDASARKAN ULASAN DI GOOGLE PLAYSTORE MENGGUNAKAN METODE SUPPORT VECTOR MACHINE,” STORAGE, vol. 2, no. 3, pp. 118–128, 2023, doi: 10.55123.
M. Khoirul, U. Hayati, and O. Nurdiawan, “ANALISIS SENTIMEN APLIKASI BRIMO PADA ULASAN PENGGUNA DI GOOGLE PLAY MENGGUNAKAN ALGORITMA NAIVE BAYES,” 2023.
M. T. Nitami and H. Februariyanti, “ANALISIS SENTIMEN ULASAN EKSPEDISI J&T EXPRESS MENGGUNAKAN ALGORITMA NAÏVE BAYES”, doi: https://doi.org/10.36595/misi.v5i1.396.