The Implementation of You Only Look Once Version 5 (YOLOv5) for Detecting Types of Acne on the Face
Main Article Content
Abstract
This research aims to detect acne on the face using the YOLOv5 method. Acne disrupts a person's
appearance and comfort. The causes of acne include increased sebum production, Propionibacterium
breakout bacteria, smoking, excessive calorie intake, and stress. The presence of acne has an impact
on psychosocial development and self-confidence. YOLOv5 method was chosen for its superior speed,
accuracy, and multi-class detection capabilities. Performance evaluation of the model using Accuracy,
Precision, Recall, and F1-Score metrics showed relatively good accuracy, with training values
reaching 99% for Accuracy, Precision, and Recall, and 99.5% for F1-Score. Testing values reached
41% for Accuracy, 66% for Precision, 51% for Recall, and 57% for F1-Score. The model demonstrated
strong capabilities in predicting acne on the face. This research is expected to contribute to the
development of better acne detection methods for individual facial care, leading to more effective
solutions for acne problems.
Keywords: Acne, Detection, YOLOv5, Accuracy, Precision
Downloads
Article Details
References
N. S. N. K. Putri Eka Sari, Mega Efrilia, “PENGETAHUAN PENDERITA JERAWAT (ACNE VULGARIS) TENTANG SKINCARE DI RW 013 PERUMAHAN MUSTIKA
GRANDE BURANGKENG SETU,” ????????
–100, 2023.
?????????
??????
???? ?? ?????
, vol. 4, no. 1, pp.
A. H. S. Heng and F. T. Chew, “Systematic review of the epidemiology of acne vulgaris,” Sci. Rep., vol. 10, no. 1, pp. 1–29, 2020, doi: 10.1038/s41598-020-62715-3.
D. F. Saragih, H. Opod, and C. Pali, “Hubungan tingkat kepercayaan diri dan jerawat (Acne vulgaris) pada siswa-siswi kelas XII di SMA Negeri 1 Manado,” J. e-Biomedik, vol. 4, no. 1, pp. 0–7, 2016, doi: 10.35790/ebm.4.1.2016.12137.
V. Seth and A. Mishra, “Acne vulgaris management: what’s new and what’s still true?,” Int. J. Adv. Med., vol. 2, no. 1, p. 1, 2015, doi: 10.5455/2349-3933.ijam20150201.
D. Agesti, S. D. Astuti, and A. Mustika, “Penanganan Jerawat Sindrom Akumulasi Dahak Menggunakan Akupuntur Dan Herbal Jianghuang,” J. Vocat. Heal. Stud., vol. 4, no. 1, p. 15, 2020, doi: 10.20473/jvhs.v4.i1.2020.15-20.
R. L. Hasanah and M. Hasan, “Deteksi Lesi Acne Vulgaris pada Citra Jerawat Wajah Menggunakan Metode K-Means Clustering,” Indones. J. Softw. Eng., vol. 8, no. 1, pp. 46–51, 2022, doi: 10.31294/ijse.v8i1.12966.
M. J. M. Issam El Naqa, Ruijiang Li, Machine Learning in Radiation Oncology. Spinger, 2015. [Online]. Available: https://link.springer.com/book/10.1007/978-3-319-18305-3
L. Marifatul Azizah, S. Fadillah Umayah, and F. Fajar, “Deteksi Kecacatan Permukaan Buah Manggis Menggunakan Metode Deep Learning dengan Konvolusi Multilayer,” Semesta Tek., vol. 21, no. 2, pp. 230–236, 2018, doi: 10.18196/st.212229.
B. A. Septyanto, “Implementasi Face Recognition Berbasis Deep Neural Network Sebagai Sistem Kendali Pada Quadcopter Implementation Of Face Recognition Based On Deep Neural Network As Control System On Quadcopter,” vol. 8, no. 6, pp. 3036–3050, 2022.
D. dr. Maria Dwikarya, Merawat Kulit & Wajah. Kawan Pustaka.
R. M. G. dan R. Sridharan, “Factors aggravating or precipitating acne in Indian adults: A hospital-based study of 110 cases,” Indian J. Dermatol., vol. vol 63, no. 4, pp. 328–331, 2018, doi: https://doi.org/10.4103/ijd.IJD_565_17.
N. Sifatullah and Z. Zulkarnain, “Jerawat (Acne vulgaris): Review penyakit infeksi pada kulit,” Pros. Semin. Nas. Biol., no. November, pp. 19–23, 2021, [Online]. Available: http://journal.uin-alauddin.ac.id/index.php/psb/article/view/22212%0Ahttp://journal.uin- alauddin.ac.id/index.php/psb/article/download/22212/12470
K. Khairunnas, E. M. Yuniarno, and A. Zaini, “Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO untuk Mobile Robot,” J. Tek. ITS, vol. 10, no. 1, 2021, doi: 10.12962/j23373539.v10i1.61622.
G. J. et Al, “ultralytics / yolov5.” Github, 2022. [Online]. Available: https://github.com/ultralytics/yolov5
Roboflow, “What is YOLOv5? A Guide for Beginners,” Jacob Solawetz, 2020. https://blog.roboflow.com/yolov5-improvements-and-evaluation/ (accessed May 09, 2023).
A. Mondin, “YOLOV5(m): Implementation From Scratch With PyTorch,” Towards AI, 2022. https://pub.towardsai.net/yolov5-m-implementation-from-scratch-with-pytorch-c8f84a66c98b (accessed Jul. 13, 2023).
S.-H. Tsang, “Brief Review: YOLOv5 for Object Detection,” Medium, 2023. https://sh- tsang.medium.com/brief-review-yolov5-for-object-detection-84cc6c6a0e3a (accessed Jul. 17, 2023).