Deteksi Mata Katarak Berdasarkan Tekstur Gray Gray Level Co-Ocurrence Matrix Dengan Metode Self Organizing Map
Main Article Content
Abstract
Cataracts are a common eye problem in Indonesia. Untreated cataracts are the main cause of blindness and the most dominant vision impairment in Indonesia among people over 50 years old, with a proportion reaching 77.7%. Regular eye examinations are necessary to prevent cataracts, but there are obstacles due to the availability of equipment and the cost of eye examinations. Therefore, an efficient and effective cataract detection system is needed. This study aims to detect cataracts in the eyes by utilizing a dataset of eyes from the internet. This research uses RGB and HSV feature extraction combined with the GLCM extraction method. The Gray Level Co-occurrence Matrix (GLCM) method describes the spatial relationship between pixel intensities in an image. With the GLCM matrix, texture information can be extracted from eye images. The Self Organizing Map (SOM) method performs learning based on feature extraction obtained from previously labeled eye images. Based on the test results, this study successfully detects cataract and normal eyes. With the greatest accuracy achieved in the comparison of 80% training data and 20% test data with dimension size = [2 2] and maximum iterations of 100, the highest accuracy of 90% was obtained.
Downloads
Article Details
References
R. Permana, R. Sovia, and M. Reza, “Sistem Pakar Certainty Factor Dalam Mendiagnosis Indikasi Penyakit Katarak Pada Anak,” 2020.
P. Astari, “Katarak: Klasifikasi, Tatalaksana, dan Komplikasi Operasi,” Cermin Dunia Kedokteran, vol. 45, no. 10, 2018.
Pusat Data dan Informasi Kementrian Kesehatan RI, “Situasi Gangguan Pengelihatan,” InfoDATIN, 2018.
R. W. Hutabri, R. Magdalena, and R. Y. N. Fu’adah, “Perancangan Sistem Deteksi Katarak Menggunakan Metode Principal Component Analysis (PCA) dan Knearest Neighbor (K-NN),” 2018.
M. Safaat, A. Sahari, and D. Lusiyanti, “Implementasi Metode K-Nearest Neighbor Untuk Mengklasifikasi Jenis Penyakit Katarak,” JURNAL ILMIAH MATEMATIKA DAN TERAPAN, vol. 17, no. 1, pp. 92–99, Jun. 2020, doi: 10.22487/2540766x.2020.v17.i1.15184.
R. Z. Ihram, R. D. Atmaja, and I. Widjayanto, “Deteksi dan Klasifikasi Stadium Katarak Senilis Berdasarkan Citra Mata Menggunakan Metode Support Vector Machine (SVM),” 2018.
R. N. Sari, “Identifikasi penyakit Mata pada citra mata dengan menggunakan Fitur Ekstraksi Gray Level Co-occurency Matrix (GLCM),” Jurnal VOI (Voice Of Informatics), vol. 12, no. 1, 2023.
R. Munarto, Yudono, and Muchtar Ali Setyo, “Klasifikasi Katarak Objek Optic Disc Citra Fundus Retina Menggunakan Support Veactor Machine,” Jurnal Ilmiah Setrum Article In Press, vol. 8, no. 1, pp. 84–95, 2019.
R. A. Rizal et al., “Analisis Gray Level Co-Occurrence Matrix (GLCM) Dalam Mengenali Citra Ekspresi Wajah,” 2019. [Online]. Available: https://iocscience.org/ejournal/index.php/mantik/index
G. F. Fitriana, “Pengenalan Tulisan Tangan Angka menggunakan Self Organizing Maps (SOM),” Building of Informatics, Technology and Science (BITS), vol. 3, no. 1, pp. 31–42, Jun. 2021, doi: 10.47065/bits.v3i1.1002.
R. E. Nanda and Y. D. Prabowo, “Pengembangan Model Pembelajaran Mesin untuk Klasifikasi Citra Lukisan Menggunakan Self-Organizing Map dengan Library Minisom,” 2022.
E. F. Himmah, M. Widyaningsih, and M. Maysaroh, “Identifikasi Kematangan Buah Kelapa Sawit Berdasarkan Warna RGB Dan HSV Menggunakan Metode K-Means Clustering,” Jurnal Sains dan Informatika, vol. 6, no. 2, pp. 193–202, Dec. 2020, doi: 10.34128/jsi.v6i2.242.
R. Nuraini, “Implementasi Jaringan Syaraf Tiruan Menggunakan Metode Self-Organizing Map Pada Klasifikasi Citra Jenis Ikan Kakap,” Technology and Science (BITS), vol. 4, no. 3, pp. 1325–1333, 2022, doi: 10.47065/bits.v4i3.2558.
H. Maharani, E. Suhartono, and S. Darana, “Analisis Estimasi Berat Telur Ayam Ras Berdasarkan Masa Penyimpanan Menggunakan Metode Histogram of Oriented Gradient Dengan Klasifikasi Self-Organizing Maps,” 2019.
H. Khairunnisa, E. Suhartono, and R. Rahmanisa, “Deteksi Anemia Melalui Citra Sel Darah Merah Menggunakan Metode Discrete Wavelet Transform dan Self Organizing Map,” 2019.