Klasifikasi Jenis Jamur Menggunakan SVM dengan Fitur HSV dan HOG

Main Article Content

Yohannes Yohannes
Daniel Udjulawa
Timoteus Ivan Sariyo

Abstract

Mushrooms are one of the plants that have so many varieties. Every variety has a different shape and color. But most people still feel difficult to know and classify every mushroom. Therefore, classification for mushroom is needed. Method for this research are Hue Saturation Value (HSV) as color segmentation, then Histogram of Oriented Gradient (HOG) as feature extraction, and Support Vector Machine (SVM) as a classification method. Mushrooms that being use are Agaricus, Amanita, Boletus, Cortinarius, Entoloma, Hygrocybe, Lactarius, Russula, Suillus. Total of mushrooms for this research are 900, with 100 each genus. This research using the k-fold Cross Validation method for 4-fold. From 900 images there are 675 for the training phase and 225 for the testing phase. Overall for this research got precision, recall, accuracy respectively 23.80%, 22.94%, and 82.69%. The best mushroom was Boletus with precision, recall, accuracy respectively 55.37%, 46.84%, and 89.69%.

Downloads

Download data is not yet available.

Article Details

How to Cite
Yohannes, Y., Udjulawa, D., & Ivan Sariyo, T. (2021). Klasifikasi Jenis Jamur Menggunakan SVM dengan Fitur HSV dan HOG. PETIR, 15(1), 113–120. https://doi.org/10.33322/petir.v15i1.1101
Section
Articles

References

[1] S. Gustina, A. Fadlil, dan R. Umar, “Sistem Identifikasi Jamur Menggunakan Metode Ekstraksi Ciri Statistik Orde 1 dan Klasifikasi Jarak,” Techno.Com, vol. 16, no. 4, hal. 378–386, 2017, doi: 10.33633/tc.v16i4.1490.
[2] T. F. Kusumaningrum, “Implementasi Convolution Neural Network (CNN) Untuk Klasifikasi Jamur Konsumsi di Indonesia Menggunakan Keras,” hal. 1–67, 2018.
[3] M. A. Rahman dan A. Y. Kuswari, “Klasifikasi Jenis Bunga menggunakan SVM dengan Fitur HSV dan HOG,” STMIK GI MDP, 2018.
[4] Meiriyama, “Klasifikasi Citra Buah Berbasis Fitur Warna HSV dengan Klasifikator SVM,” J. Komput. Terap., vol. 4, no. 1, hal. 50–61, 2018.
[5] D. Alamsyah, “Pengenalan Mobil pada Citra Digital Menggunakan HOG-SVM,” Jatisi, vol. 1, no. 2, hal. 162–168, 2017.
[6] M. A. Al Hafis, A. S. M.K, D. Alamsyah, dan S. Devella, “Implementasi Metode R-HOG dan Support Vector Machine (SVM) Untuk Smile Detection,” STMIK GI MDP, hal. 1–11, 2016.
[7] Y. Yohannes, Y. P. Sari, dan I. Feristyani, “Klasifikasi Wajah Hewan Mamalia Tampak Depan Menggunakan k-Nearest Neighbor Dengan Ekstraksi Fitur HOG,” J. Tek. Inform. dan Sist. Inf., vol. 5, no. 1, hal. 84–97, 2019, doi: 10.28932/jutisi.v5i1.1584.
[8] M. E. Al Rivan dan Y. Yohannes, “Klasifikasi Mamalia Berdasarkan Bentuk Wajah Dengan K-NN Menggunakan Fitur CAS Dan HOG,” J. Tek. Inform. dan Sist. Inf., vol. 5, no. 2, hal. 173–180, 2019.
[9] Y. Yohannes dan M. E. Al Rivan, “Penggunaan Global Contrast Saliency dan Histogram of Oriented Gradient Sebagai Fitur untuk Klasifikasi Jenis Hewan Mamalia,” Petir, vol. 13, no. 1, hal. 80–85, 2020, doi: 10.33322/petir.v13i1.908.
[10] D. Amputri, S. Nadra, G. Gasim, dan M. E. Al Rivan, “Perbandingan Jarak Potret dan Resolusi Kamera pada Tingkat Akurasi Pengenalan Angka kWh Meter Menggunakan SVM,” J. Inform. Glob., vol. 8, hal. 7–12, 2017.
[11] Z. Si dan S. Zhu, “Learning Hybrid Image Templates (HIT) by Information Projection,” IEEE Trans. Pattern Anal. Mach. Intell., hal. 1354–1367, 2012.