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ABSTRACT  

Rice is one of the world’s most essential staple foods, particularly in Indonesia. Proper nutrition is 

crucial for the growth and development of rice plants, as nutrient deficiencies can impact both 

growth processes and the quality of the crop at harvest. This study utilizes a dataset from Kaggle, 

comprising 1,190 images of rice leaves, categorized into two classes: Sufficient and Deficient. The 

data were divided with an 80% training set, 10% testing set, and 10% validation set. Three model 

architectures—VGG16, MobileNet, and Xception—were evaluated using Jupyter and Google Colab 

as the primary tools. Experiments were conducted with 10 epochs and batch sizes of 32 and 64. The 

highest accuracy achieved was 78.15% and 76.47% for VGG16, 82.69% and 86.55% for MobileNet, 

and 82.33% and 88.24% for Xception. Overall, the Xception model performed best, with an accuracy 

of 88.24% using a batch size of 32 on Jupyter. 
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1. INTRODUCTION 

Urban agricultural land is rapidly decreasing, primarily due to conversion into industrial and 

residential zones driven by economic, social, and population growth factors, as well as land 

limitations [1][2]. Over the past decade, this trend has significantly affected agricultural spaces in 

cities. The hydroponic method has emerged as a viable solution to overcome limitations in available 

agricultural land [3]. Rice, one of the world’s most important staple crops, is particularly vital in 

Indonesia. However, while population growth drives up demand for rice, production struggles to 

keep pace due to challenges such as adverse weather, temperature fluctuations, and plant diseases. 

This imbalance highlights the need for strategies that promote healthy rice crop growth and disease 

management [4][5]. Adequate nutrition plays a crucial role in plant productivity and growth rate, as 

nutrient deficiencies can disrupt these processes, leading to reduced yields and visible abnormalities 

in plants [6]. One essential nutrient for rice, especially during the vegetative growth phase, requires 

monitoring to optimize plant health [7][8]. The Leaf Color Chart (LCC) is commonly used by farmers 

to visually assess plant fertility, yet this manual approach is time-intensive and can lead to 

inconsistent results due to subjective perceptions among users [9][10][11]. Convolutional Neural 

Networks (CNNs), as a form of deep learning, have gained popularity for their advancements in 

fields like pattern recognition, including image and object classification [12][13][14]. Previous 

studies in plant health monitoring applied CNNs to detect diseases in crops such as apples, using a 

dataset of 3,151 leaf images from PlantVillage. The CNN model, based on the LeNet-5 architecture, 

demonstrated high accuracy and decreasing loss across increasing epochs, indicating good model 

performance. For example, at 50, 75, and 100 epochs, the training model achieved an average 

accuracy of 99.2% with a 0.063 loss, while testing accuracy averaged 94.9% with a 0.2777 validation 

loss. Among the apple classes, Black Rot achieved the highest accuracy at 100%, while Apple Scab 

was the lowest at 74.4%, resulting in an average accuracy of 89.62% [15]. Additional research has 

used CNNs to develop systems for detecting plant conditions in lettuce [16] and rice leaves [17]. 

These studies included processes such as image capture, processing, and classification [18][19][20]. 

A partition test with 90% training data and 10% testing data showed the highest accuracy at 97.6% 

based on a confusion matrix. Further testing with 250 epochs and a batch size of 15 yielded an 

impressive 99.3% accuracy and 99.2% accuracy, respectively [16]. This research aims to identify 

nutrient deficiencies in rice leaves using CNNs, comparing the performance of the VGG16, 

MobileNet, and Xception model architectures. By analyzing their accuracy, this study seeks to 

determine the most effective model for providing accurate nutrient recommendations for rice crops. 

 

2. RESEARCH METHODS 

The research begins with problem identification, followed by a literature review aimed at 

building on existing studies. Next, data collection is conducted based on a needs analysis. The 

research method includes the stages of data preprocessing, architecture design, model training and 

evaluation, and concludes with documentation and report writing. These stages are detailed as 

follows: 

 

2.1. Problem identification  

In the initial stage of this research, the problems to be addressed are identified. The focus of 

this study is the provision of nutrients to hydroponic rice plants. To address this, the research proposes 

a system utilizing various CNN architectures, which will be compared to determine the most effective 

mode.  
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Table 1. Nutrient Classification of Rice Leaf Images Dataset 

image class 

 

 

 

 

Less 

 

 

 

 

Normal 

 

This Table 1 presents examples from a dataset used to classify rice leaves based on nutrient 

levels, divided into two classes: "Less" and "Normal." The "Image" column contains sample images 

of rice leaves categorized by nutrient status, with each image showing visual differences in leaf 

coloration and texture that correlate with nutrient levels. The "Class" column indicates the nutrient 

classification of each leaf image, with two categories: "Less" represents rice leaves with nutrient 

deficiencies, typically appearing lighter in color due to a lack of essential nutrients, while "Normal" 

represents rice leaves with sufficient nutrients, which appear healthier and greener, indicating 

balanced nutrient levels. This dataset is intended to train and evaluate models for nutrient deficiency 

detection in rice plants using image classification techniques. 

 

2.2. Data collection method 

This stage involves collecting data on healthy rice plant leaves to create a dataset. The dataset 

used in this study was obtained from the Kaggle website in June 2022. The data consists of images 

in .jpg format. The images are divided into two classes: the "Sufficient" class, containing images of 

rice leaves with adequate nutrients, and the "Less" class, containing images of rice leaves with 

nutrient deficiencies. Each class contains 595 images, resulting in a total of 1,190 images for this 

dataset. 

 

2.3. Pre-Processing 

 At this stage the data that has been obtained is pre-processed first with the aim that the existing 

image data has a uniform size between one another and can speed up the training process. There are 

2 (three) steps involved in data pre-processing, namely: 

1. Equalizing the size of images in the dataset, so that images that previously had a larger or 

smaller size can become the same size. 

2. The process of converting images into arrays, this is done so that existing data can be 

normalized before entering the next process. 
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2.4. Architecture Model Design 

In this section, we will do some training and testing on several model architectures, the model 

architectures are VGG16, MobileNet, and Xception. The dataset is divided into 80% for training data 

and 20% for testing and validation data, each of which is divided into 828 training data, 104 testing 

data, and 104 validation data. 

 

2.5. Evaluation of architectural design results 

The results of the evaluation process of the model that has been trained, in this case the 

confusion matrix will be used to obtain accuracy, recall, precision, and F1-Score values. Then, the 

evaluation results obtained will be used as a basis for whether the model that has been made is good 

enough or still needs more training. The following formulas are used in the evaluation process using 

confusion matrix: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑇𝑃(𝑖=𝑗)𝑁

𝑖=1

∑ ∑ 𝐶(𝑖,𝑗)𝑁
𝑗=1

𝑁
𝑖=1

 𝑥 100%    (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐶𝑖) =  
𝑇𝑃(𝑖=𝑗)

𝑇𝑃(𝑖=𝑗)+∑ 𝐶(𝑗,𝑖)𝑁
𝑗=1

   

 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙(𝐶𝑖) =  
𝑇𝑃(𝑖=𝑗)

𝑇𝑃(𝑖=𝑗)+∑ 𝐶(𝑖,𝑗)𝑁
𝑖=1 

   

 (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒(𝐶𝑖) = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐶𝑖) 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙(𝐶𝑖)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐶𝑖)+𝑅𝑒𝑐𝑎𝑙𝑙(𝐶𝑖)
 

 (4) 

3. RESULTS AND DISCUSSION 

   The results obtained in this study are the accuracy level of several models as an identification 

of hydroponic rice plant nutrition obtained in the design of several model architectures using the 

CNN method, the accuracy results of each model architecture used in this study, which have been 

carried out 3 times test data with batch size values of 32 and 64 conducted in Jupyter and Google 

Collaboratory. Training results and model comparison using a dataset of 952 images as training data 

and 119 images as test and validation data. The following data are the accuracy results obtained: 

 

3.1. VGG16. 

The following are the accuracy results during the research that has been carried out using the 

VGG16 model architecture: 

 

Table 2. VGG16 accuracy result batch size = 32 

Jupyter Google Colaboratory 

68,91% 73,95% 

72,27% 76,47% 

74,79% 78,15% 
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Table 3. VGG16 accuracy result batch size = 64 

Jupyter Google Colaboratory 

68,91% 69,75% 

75,63% 75,63% 

76,47% 73,95% 

 

Table 2 and Table 3 show the accuracy results on the VGG16 model with batch size = 32. In 

results 1 to 3 there is a difference, although only a few percent, which shows that each training of a 

model with the same data and parameters does not necessarily produce the same accuracy. 

 

 In this case, the accuracy obtained on Google Collaboratory is relatively higher than the accuracy 

obtained on Jupyter. 

 

 
Fig 1. VGG16 Architecture Training Chart on Jupyter 

 

 
Fig 2. VGG16 Architecture Training Chart on Google Colaboratory 

 

In Figure 1, the best epoch or process is at the 10th epoch in one of the model trainings 

conducted on Jupyter using the VGG16 model architecture. In Figure 2, the training process graph 

shows that the best process or the best epoch is at the 10th epoch in one of the model trainings using 

the VGG16 model architecture on Google Collaboratory. 

 

3.2. MobileNet 

The following are the accuracy results during the research that has been carried out using the 



PETIR: Jurnal Pengkajian dan Penerapan Teknik Informatika 
Vol. 17, No. 2, September 2024, P-ISSN 1978-9262, E-ISSN 2655-5018 

DOI: https://doi.org/10.33322/petir.v17i2.2416 

PETIR | 293 

MobileNet model architecture: 

 

Table 4. MobileNet accuracy result batch size = 32 

Jupyter Google Colaboratory 

79,83% 78,85% 

76,47% 82,69% 

86,55% 81,73% 

 

Table 5. MobileNet accuracy result batch size = 64 

Jupyter Google Colaboratory 

80,67% 79,83% 

84,03% 81,73% 

81,51% 79,81% 

 

From the accuracy results in Table 4 and Table 5, it can be seen that the resulting accuracy has 

a different value even though the parameters entered in the process are the same. The best model 

accuracy of the MobileNet model architecture in this study is 86.55% with batch size = 32 and run 

on Jupyter. 

 

 
Fig 3. MobileNet Architecture Training Chart on Jupyter 

 

 
Fig 4. MobileNet Architecture Training Chart on Google Colaboratory 
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Figure 3 explains that the best epoch or the best training process in the graph is in the 9th 

epoch in one of the model trainings carried out on Jupyter with the MobileNet architecture model. 

Figure 4 shows that the best epoch found in one of the trainings in Google Collaboratory with the 

MobileNet architecture model is in the 10th process or epoch. 

 

3.3. Xception 

The following are the accuracy results during the research that has been carried out using the 

Xception model architecture: 

 

Table 6. Xception accuracy result batch size = 32 

Jupyter Google Colaboratory 

87,39% 78,99% 

84,03% 78,15% 

88,24% 82,35% 

Table 7. Xception accuracy result batch size = 64 

Jupyter Google Colaboratory 

79,83% 74,79% 

68,91% 78,15% 

80,67% 79,83% 

 

The accuracy obtained during the experiment can be seen in Table 6, which shows that at an 

input batch size of 32, the accuracy results obtained on the Xception architecture using Jupyter tend 

to be higher than using Google Collaboratory. At batch size 64, Table 7, there is no significant change 

from the other models. Then the best model from the Xception architecture test results in this study 

is 88.24% using Jupyter and an input batch size of 32. 

 

 
Fig 5. Xception Architecture Training Chart on Jupyter 

 



PETIR: Jurnal Pengkajian dan Penerapan Teknik Informatika 
Vol. 17, No. 2, September 2024, P-ISSN 1978-9262, E-ISSN 2655-5018 

DOI: https://doi.org/10.33322/petir.v17i2.2416 

PETIR | 295 

 
Fig 6. Xception Architecture Training Chart on Google Colaboratory 

 

Figure 6 shows that the best epoch in one of the Xception models trained in Google 

Collaboratory is at epoch 5. When running the training process, there are some differences in each 

processing on a model and the tools used, these differences are mainly in the computation time and 

the accuracy generated at the epoch entered in this study, which is 10. 

Overall, the computation time is shorter when the training process is carried out on Google 

Collaboratory, and of the three model architectures tested during the research, the shortest training 

process is obtained on the Mobilenet model architecture. The slowest training process occurs in the 

Jupyter and Xception model architectures. 

In the results of the research done, the model is built and trained using 1190 image data, which 

is divided into 592 data as training data and 119 data, each of which is used as test and validation 

data. In this training process, there is a loss or training loss which shows the loss function value of 

the training and prediction data on the trained model, then there is training accuracy which shows 

the calculation of the accuracy value in the training process and prediction data on the model, then 

validation loss which is the calculation of the loss function of the validation and prediction data on 

the trained model, and there is validation accuracy which shows the calculation of the accuracy value 

of the validation and prediction data. In this study, it was found that differences in batch size and 

also the location of the training execution on multiple models being trained can affect the level of 

accuracy that will be generated as well as the length of time the computation runs when training data. 

The computation will be faster if done on Google Collaboratory, but requires a stable network for 

the computation to run smoothly. The computation is slower when done on Jupyter, but using Jupyter 

does not require a signal and the computation will continue as long as the computer is not turned off. 

The highest accuracy result in this study is shown by the Xception model architecture with batch size 

= 32 inputs and data training performed in Jupyter, where the accuracy is 88.24%. 

After model training, each model was tested. Testing is done using the Iconfusion matrix by 

determining the True Positive (TP), True Negative (TN), False Positive (FP) and False Negative 

(FN) values in order to calculate the accuracy, precision, recall and F1 score. In the model with the 

best accuracy, the TP value is 52, TN 53, FP 10 and FN 4. Based on the confusion matrix calculations, 

the resulting accuracy is 88%, which corresponds to the accuracy during model training. Then the 

precision result is 83%, the recall is 92%, the F1 score is 88%. 

 

4. CONCLUSIONS AND SUGGESTIONS  

Based on the research findings and discussion, several conclusions can be drawn. The 

development of a model for identifying the nutritional needs of rice plants using rice leaf images 

involves multiple stages, including data collection and class division, image preprocessing, model 
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architecture selection (VGG16, MobileNet, Xception), convolution, max pooling, flattening, fully 

connected layers, and model training with 10 epochs. From the model training process in this study, 

the best accuracy results for each architecture were as follows: VGG16 achieved 78.15% accuracy 

with Google Colab and 76.47% with Jupyter; MobileNet achieved 82.69% accuracy with Google 

Colab and 86.55% with Jupyter; and Xception achieved 82.35% accuracy with Google Colab and 

88.24% with Jupyter. Overall, the accuracy results obtained are quite satisfactory. Model testing 

using the confusion matrix yielded an accuracy of 88%, precision of 83%, recall of 92%, and an F1 

score of 88%. Future research could develop this model into an application or tool for real-time 

identification by implementing preprocessing without augmentation, and later adding image 

augmentation at the data preprocessing stage. Increasing the dataset size for model training is also 

recommended to enhance accuracy and improve model performance further. 
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