Penerapan Algoritma Partitioning Around Medoids Untuk Menentukan Kelompok Penyakit Pasien (Studi Kasus : Puskesmas Kajen Pekalongan)

Main Article Content

Anindya Khrisna Wardhani

Abstract

Heaps of data residing on health services, polyclinics, hospitals and clinics are now only limited to providing graphs or statistics on the number of patients seeking treatment. The contents of the report in the form of the illness and its report medicine information from the disease.This research applies methods of partitioning around medoids (k-medoids) to produce information about the grouping of the disease "Acute" and "NOT ACUTE" that affects many patients in Puskesmas Kajen Pekalongan. Then these results can be used as ingredients or basic health education by the local Health Department. Based on the data obtained, the resulting number of acute cluster there are 94 items, not acute cluster 906 items with a total amount of data is 1000.

Downloads

Download data is not yet available.

Article Details

How to Cite
Wardhani, A. K. (2019). Penerapan Algoritma Partitioning Around Medoids Untuk Menentukan Kelompok Penyakit Pasien (Studi Kasus : Puskesmas Kajen Pekalongan). KILAT, 6(1), 6–10. https://doi.org/10.33322/kilat.v6i1.661
Section
Articles

References

[1] V. Handayani, A. dan A. P. kurniati, “Analisa Clustering Menggunakan Algoritma K-Modes,” Telkom University, pp. 1-8, 2010.
[2] F. E. Agustin, A. Fitria dan A. H. S, “Implementasi Algoritma K-Means Untuk Menentukan Kelompok Pengayaan Materi Mata Pelajaran Ujian Nasional (Studi Kasus : SMP Negeri 101 Jakarta),” Jurnal Teknik Informatika, vol. 8, no. 1, pp. 73 - 78, 2015.
[3] K. R. Prilianti dan H. Wijaya, “Aplikasi Text Mining Untuk Automasi Penentuan Tren Topik Skripsi Dengan Metode K-Means Clustering,” Jurnal Cybermatika, vol. 2, no. 1, pp. 1-6, 2014.
[4] A. Yusuf dan T. Priambadha, “Supprot Vektor Machines Yang Didukung K-Means Clustering Dalam Klasifikasi Dokumen,” JUTI, vol. 11, no. 1, pp. 13-16, 2013.
[5] N. A, S. B dan P. U, “Implementasi Naive Bayes Classifier Pada Program Bantu Penentuan Buku Referensi Mata Kuliah,” Jurnal Informatika, vol. 3, no. 2, pp. 32-36, 2007.
[6] D. Septiari, “Implementasi Metode Naive Bayes Classifier Dalam Klasifikasi Kelayakan Calon Pendonor Darah (Studi Kasus : PMI Kabupaten Demak),” Universitas Dian Nuswantoro, Semarang, 2016.
[7] Budiono, a. Fahmi dan Pujiono, “Penerapan Metode Association Rule Discovery Menggunakan Algoritma Apriori Untuk Mengidentifikasi Pola Penyakit Radang Sendi,” Techno.COM, vol. 13, no. 2, pp. 115-124, 2014.
[8] Supardi, D. E. Ratnawati dan W. F. Mahmudy, “Pengenalan Pola Transaksi Sirkulasi Buku Pada Database Perpustakaan Menggunakan Algoritma Generalized Sequential Pattern,” Jurnal Mahasiswa PTIIK Universitas Brawijaya, vol. 4, no. 11, pp. 1-8, 2014.
[9] R. F. Jannah, “Rancang Bangun Sistem Hasil Produksi Dengan Memanfaatkan Metode Least Square Regression Line (Studi Kasus : Toko Keeava Salad & Puding)”,” Universitas Jember, Jember, 2015.
[10]




[11]


[12]




[13]

T. Velmurugan, "Efficiency of k-Means and K-Medoids Algorithms for Clustering Arbitrary DataPoints," International Journal Computer Technology & Applications, vol. 3, 2012, pp. 1758-1764.
Santosa, B. 2007. Data Mining: Teknik Pemanfaatan Data untuk Keperluan Bisnis. Graha Ilmu. Yogyakarta.
T. Velmurugan, "Efficiency of k-Means and K-Medoids Algorithms for Clustering Arbitrary Data Points," International Journal Computer Technology & Applications, vol. 3, 2012, pp. 1758-1764.
X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. Mclachlan, A. Ng, B. Liu, P.S. Yu, Z.Z. Michael, S. David, and J.H. Dan, "Top 10 algorithms in data mining," Knowledge and Information Systems, 2008, pp. 1-37.