Power Generation system pada Gas Turbine Generator SGT- 800 Pada PT Kilang Pertamina Balikpapan

Main Article Content

soni prayogi

Abstract

This research aims to evaluate the performance and efficiency of the power generation system in meeting the refinery's energy needs. The research method used involves in-depth analysis of operational and technical data from gas turbine generators, as well as factors that influence performance and efficiency. The research results show that this power generation system is able to provide stable and efficient power output in accordance with refinery demand. Operational parameters such as temperature, pressure and gas flow stability have an important role in maintaining optimal performance. Apart from that, regular maintenance and routine monitoring of critical components are also needed to ensure the smooth operation of the power generation system. These findings provide valuable insights for the energy industry regarding the operation and maintenance of gas turbine generator-based power generation systems. Optimizing operational processes and proper maintenance can increase the efficiency and productivity of power generation systems, thereby supporting smooth refinery operations and minimizing potential disruptions to energy supply. In conclusion, this research highlights the importance of effective management of power generation systems to achieve the desired sustainability and energy efficiency goals.

Downloads

Download data is not yet available.

Article Details

How to Cite
prayogi, soni. (2025). Power Generation system pada Gas Turbine Generator SGT- 800 Pada PT Kilang Pertamina Balikpapan. KILAT, 13(2). Retrieved from http://jurnal.itpln.ac.id/kilat/article/view/2489
Section
Articles

References

A. Madhlopa, “Gas Turbine Fuels and Fuel Systems,” in Principles of Solar Gas Turbines for Electricity Generation, A. Madhlopa, Ed., Cham: Springer International Publishing, 2018, pp. 27–49. doi: 10.1007/978-3-319-68388-1_2.

A. Madhlopa, “Introduction to Solar Gas Turbines,” in Principles of Solar Gas Turbines for Electricity Generation, A. Madhlopa, Ed., Cham: Springer International Publishing, 2018, pp. 1–25. doi: 10.1007/978-3-319-68388-1_1.

W. H. Stein and R. Buck, “Advanced power cycles for concentrated solar power,” Solar Energy, vol. 152, pp. 91–105, Aug. 2017, doi: 10.1016/j.solener.2017.04.054.

N. Subramanian and P. Madejski, “Analysis of CO2 capture process from flue-gases in combined cycle gas turbine power plant using post-combustion capture technology,” Energy, vol. 282, p. 128311, Nov. 2023, doi: 10.1016/j.energy.2023.128311.

M. Muhammad, B. Ragadita, S. Prayogi, and S. Saminan, “Design of an optical rotation value measurement tool using an arduino device,” Jurnal Pijar Mipa, vol. 18, no. 5, Art. no. 5, Sep. 2023, doi: 10.29303/jpm.v18i5.4811.

W. Wang, W. Huang, Y. Cao, and C. Gao, “Atmospheric Test and Numerical Models Assessment of Annular Combustor on ZK2000 Gas Turbine,” J. Therm. Sci., vol. 27, no. 6, pp. 516–526, Dec. 2018, doi: 10.1007/s11630-018-1018-z.

A. P. M. Erlangga, K. S. K. Dinatha, F. E. Nainggolan, and S. Prayogi, “Prototipe Otomatisasi dan Pemantauan Sistem Hidroponik Berbasis IoT dengan Pemanfaatan Solar Panel Sebagai Sumber Energi,” G-Tech: Jurnal Teknologi Terapan, vol. 7, no. 4, pp. 1367–1377, Oct. 2023, doi: 10.33379/gtech.v7i4.3143.

T. Ourbak and L. Tubiana, “Changing the game: the Paris Agreement and the role of scientific communities,” Climate Policy, vol. 17, no. 7, pp. 819–824, Oct. 2017, doi: 10.1080/14693062.2017.1348331.

I. K. Iliev, A. K. Terziev, H. I. Beloev, I. Nikolaev, and A. G. Georgiev, “Comparative analysis of the energy efficiency of different types co-generators at large scales CHPs,” Energy, vol. 221, p. 119755, Apr. 2021, doi: 10.1016/j.energy.2021.119755.

S. Prayogi, F. Silviana, and S. Saminan, “Resistor and Capacitor Time Constant Measuring Instrument Using Arduino UNO,” Jurnal Ilmiah Pendidikan Fisika Al-Biruni, vol. 12, no. 1, Art. no. 1, May 2023, doi: 10.24042/jipfalbiruni.v12i1.15323.

M. Panowski, R. Zarzycki, and R. Koby?ecki, “Conversion of steam power plant into cogeneration unit - Case study,” Energy, vol. 231, p. 120872, Sep. 2021, doi: 10.1016/j.energy.2021.120872.

D. Pashchenko, R. Mustafin, and I. Karpilov, “Efficiency of chemically recuperated gas turbine fired with methane: Effect of operating parameters,” Applied Thermal Engineering, vol. 212, p. 118578, Jul. 2022, doi: 10.1016/j.applthermaleng.2022.118578.

L. Aichmayer, J. Garrido, W. Wang, and B. Laumert, “Experimental evaluation of a novel solar receiver for a micro gas-turbine based solar dish system in the KTH high-flux solar simulator,” Energy, vol. 159, pp. 184–195, Sep. 2018, doi: 10.1016/j.energy.2018.06.120.

T. Bondarenko et al., “Experimental investigation of thermal decomposition of Bazhenov formation kerogen: Mechanism and application for thermal enhanced oil recovery,” Journal of Petroleum Science and Engineering, vol. 150, pp. 288–296, Feb. 2017, doi: 10.1016/j.petrol.2016.12.011.

R. A. Ramadhan, G. R. Kakke, I. N. Fajar, and S. Prayogi, “Smart Trash Bin Berbasis Internet Of Things Menggunakan Suplai dari Panel Surya,” G-Tech: Jurnal Teknologi Terapan, vol. 7, no. 3, pp. 1149–1158, Jul. 2023, doi: 10.33379/gtech.v7i3.2777.

M. Voldsund et al., “Low carbon power generation for offshore oil and gas production,” Energy Conversion and Management: X, vol. 17, p. 100347, Jan. 2023, doi: 10.1016/j.ecmx.2023.100347.

S. Ghufron and S. Prayogi, “Cooling System in Machine Operation at Gas Engine Power Plant at PT Multidaya Prima Elektrindo,” Journal of Artificial Intelligence and Digital Business (RIGGS), vol. 1, no. 2, Art. no. 2, 2023, doi: 10.31004/riggs.v1i2.21.

J. Li and Y. Li, “Micro gas turbine: Developments, applications, and key technologies on components,” Propulsion and Power Research, vol. 12, no. 1, pp. 1–43, Mar. 2023, doi: 10.1016/j.jppr.2023.01.002.

G. Kang, Z. P. Chan, S. B. M. Saleh, and Y. Cao, “Removal of high concentration CO2 from natural gas using high pressure membrane contactors,” International Journal of Greenhouse Gas Control, vol. 60, pp. 1–9, May 2017, doi: 10.1016/j.ijggc.2017.03.003.

V. Eveloy, P. Rodgers, and A. Al Alili, “Multi-objective optimization of a pressurized solid oxide fuel cell – gas turbine hybrid system integrated with seawater reverse osmosis,” Energy, vol. 123, pp. 594–614, Mar. 2017, doi: 10.1016/j.energy.2017.01.127.

E. Bellos and C. Tzivanidis, “Multi-objective optimization of a solar driven trigeneration system,” Energy, vol. 149, pp. 47–62, Apr. 2018, doi: 10.1016/j.energy.2018.02.054.

Y. Cao, H. A. Dhahad, H. M. Hussen, and T. Parikhani, “Proposal and evaluation of two innovative combined gas turbine and ejector refrigeration cycles fueled by biogas: Thermodynamic and optimization analysis,” Renewable Energy, vol. 181, pp. 749–764, Jan. 2022, doi: 10.1016/j.renene.2021.09.043.

R. M. Montañés, C. Zotic?, and A. Reyes-Lúa, “Operation and control of compact offshore combined cycles for power generation,” Energy, vol. 290, p. 130315, Mar. 2024, doi: 10.1016/j.energy.2024.130315.

Y. N. Dabwan and E. M. A. Mokheimer, “Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant,” Energy Conversion and Management, vol. 148, pp. 830–843, Sep. 2017, doi: 10.1016/j.enconman.2017.06.057.

E. M. A. Mokheimer, Y. N. Dabwan, and M. A. Habib, “Optimal integration of solar energy with fossil fuel gas turbine cogeneration plants using three different CSP technologies in Saudi Arabia,” Applied Energy, vol. 185, pp. 1268–1280, Jan. 2017, doi: 10.1016/j.apenergy.2015.12.029.

E. Bellos, C. Tzivanidis, and K. A. Antonopoulos, “Parametric analysis and optimization of a solar assisted gas turbine,” Energy Conversion and Management, vol. 139, pp. 151–165, May 2017, doi: 10.1016/j.enconman.2017.02.042.

M. I. Soomro and W.-S. Kim, “Performance and economic evaluation of linear Fresnel reflector plant integrated direct contact membrane distillation system,” Renewable Energy, vol. 129, pp. 561–569, Dec. 2018, doi: 10.1016/j.renene.2018.06.010.

A. Shahrabi Farahani, H. Kohandel, H. Moradtabrizi, S. Khosravi, E. Mohammadi, and A. Ramesh, “Power generation gas turbine performance enhancement in hot ambient temperature conditions through axial compressor design optimization,” Applied Thermal Engineering, vol. 236, p. 121733, Jan. 2024, doi: 10.1016/j.applthermaleng.2023.121733.