Perancangan Sistem Aplikasi Prediksi Risiko pada Koneksi Komponen Listrik Panel Control Motor Chiller Menggunakan Thermal Imagers Fluke dengan Metode AI-Vision

Main Article Content

Kharisma Hikmawan

Abstract

The high demand for data and information in the digital era requires the availability of supporting facilities in the form of data centers. As a physical facility, a data center consists of an array of interconnected electronic devices that form a system. Large amounts of data processing activity can cause electronic devices to become overheated. Overheated temperatures on electronic components can cause problems such as damage to devices and decreased performance, resulting in the loss of important data and threatening the continuity of business operations. Optimal data center temperatures can be maintained by using a chiller that is monitored regularly. Through this research, the authors designed the AI-Vision system to make risk predictions for chillers in the H2-01 Karawang data center. AI-Vision is an artificial intelligence application system using machine learning methods to calculate the risk prediction of the condition of electrical components in a chiller based on images captured by thermal imagers fluke. The AI-Vision application uses image processing and the K-Nearest Neighbors algorithm to produce risk predictions that are adjusted to standards issued by PT. DCI by adopting IEC 60269 and PUIL 2011 standards, as well as research conducted by EPRI (Electric Power Research Institute). The results of this study are in the form of a risk prediction with an accuracy value of 90%.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hikmawan, K. (2024). Perancangan Sistem Aplikasi Prediksi Risiko pada Koneksi Komponen Listrik Panel Control Motor Chiller Menggunakan Thermal Imagers Fluke dengan Metode AI-Vision. KILAT, 12(2), 160–168. Retrieved from http://jurnal.itpln.ac.id/kilat/article/view/1977
Section
Articles

References

Al-Qawasmeh, S. M., Ahmad, N. N., & Othman, M. F. (2014). The impact of temperature on computer performance: A critical review. International Journal of Computer Science and Security, 8(2), 20-30.

Anwar, Baharuddin., & Agus Supardi. (2019). Penentuan Hot Point dengan Menggunakan Metode Thermovisi pada Gardu Induk 150 kV Purwodadi. Skripsi thesis pada Universitas Muhammadiyah Surakarta.

Barnawi, Ahmed., Prateek C., Rajkumar T., Neeraj K., & Bander A. (2021). Artificial Intelligence-Enabled Internet Of Things-Based System For COVID-19 Screening Using Aerial Thermal Imaging. Jurnal pada Elsevier Public Health Emergency Collection. doi: 10.1016/j.future.2021.05.019.

Emmaett J. Vaughan., & Curtis M. Elliott. (1978). Fundamental of Risk and Insurance. New York: John Willey & Sons Inc.

Goenawan, A. D., M, Bakhara, A. R., & Mutiara, P. P. (2022). Identifikasi Warna Pada Objek Citra Digital Secara Real Time Menggunakan Pengolahan Model Warna HSV. Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA). E-ISSN: 2962-6129.

Hanafi. (2006). Manajemen Risiko Operasional. Jakarta: PT Elex Computindo.

Kafil, Mohammad. (2019). Penerapan Metode K-Nearest Neighbors untuk Prediksi Penjualan Berbasis Web pada Boutiq Dealove Bondowoso. Jurnal JATI Vol. 3 No. 2, September 2019. Intitut Teknologi Nasional Malang.

MarketsandMarkets. (2020). Data center solutions market by solution type (servers, storage, networking, software), service type (consulting, installation and deployment, maintenance and support), tier type, end-user, vertical, and region - global forecast to 2025. MarketsandMarkets. https://www.marketsandmarkets.com/Market-Reports/data-center-solutions-market228801466.ht ml diakses 16 Februari 2023.

Muhyiddin. (2020). Pengertian dan Konsep Risiko. Dokumen pada Learning Management System Universitas Esa Unggul.

Pasaribu, F.I.Z., & Fazawi, M. L. (2021). Penentuan Hot Point dan Monitoring Peralatan Menggunakan Thermal Imagers Fluke dengan Metode Thermovisi. JESCE (Journal of Electrical and System Control Engineering). 4 (2) Februari 2021: 113-128.

PLN. (2014). Buku Pedoman Pemeliharaan. No.0520-2.K/DIR.PT PLN (PERSERO).

Srivastava, A., Tiwari, V., & Saha, S. (2013). Impact of temperature on the performance of electronic devices. Journal of Engineering, 2013, Article ID 318794, 10 pages. https://doi.org/10.1155/2013/318794.

Yulianti, D. E., & Nanda, H. B. (2008). Best Practice Perancangan Fasilitas Data Center. Bandung: Institut Teknologi Bandung.